
Springboard™
Development Guide
for Handspring™
Handheld Computers

Release 1.12

Springboard Development Guide for Handspring Handheld Computers

- 2 -

Information herein is preliminary and subject to change without notice.

Copyright © 1999-2001 by Handspring, Inc. All rights reserved.

TRADEMARK ACKNOWLEDGMENT:

Handspring, Visor, and Springboard are trademarks of Handspring, Inc.

All other trademarks are the properties of their respective owners.

Document number: 80-0091-00

Handspring, Inc.

189 Bernardo Ave.

Mountain View, CA 94043-5203

TEL: (650) 230-5000

FAX: (650) 230-2100

www.handspring.com

http://www.handspring.com/

Springboard Development Guide for Handspring Handheld Computers

- 3 -

Change History

Revision Date Description

Compatibility Testing: An updated guide to Springboard compatibility is
located on the Handspring website.

1.12 16 April 2001

Springboard Trademarks and Logos: An updated guide to Springboard logos
and usage guidelines are located on the Handspring website.

1.11 18 Oct 2000 Springboard Interface Pinout and Signal Descriptions: The microphone
polarity was still reversed in revision 1.1 of this document. This document
corrects the pin assignments.

Product Guides: Information specific to a Handspring product has been moved
to our Product Guides. Information on the cradle interface and any
implementation details that may change from product to product are located
here.

Module Design Details, Catching Module Removals: This section has been
updated to reflect implementation differences between Palm OS revisions.

Software API Extensions: Several API call definitions have been added to this
section. Specifically, HSPrefSet() and HSPrefGet() support custom serial
library redirection.

1.1 16 Oct 2000

Electrical Specifications, AC Characteristics: The Springboard read and
write timing parameters have changed to accommodate the range of Handspring
handheld products. Varying CPU speeds and design differences between
products have been taken into account.

Springboard Development Guide for Handspring Handheld Computers

- 4 -

Table of Contents

1. Springboard Software Development..7

1.1. Software Development for Handspring Handhelds ..7
1.2. Generic Applications ...8

1.2.1. Handspring Palm OS GNU Tools.. 8
1.2.2. Metrowerks CodeWarrior.. 8
1.2.3. Other Development Environments ... 8

1.3. Generic Applications on a Springboard Module ...8
1.4. Special Purpose Applications ..9
1.5. Application Development To Support Plug-and-Play..9

1.5.1. Generic Applications .. 9
1.5.2. Special-Purpose Applications ... 10

2. Module Design Details...11

2.1. Module Memory Space ...11
2.2. Module Access Time and Wait State ...12
2.3. Interrupts..12
2.4. Interrupt Latency...12
2.5. Power Management...13
2.6. Power Management Options For Interrupt Handlers ..14
2.7. Module Insertion Notification..14
2.8. Catching Module Removals ..16

3. Springboard Software Integration ...18

3.1. Module Setup Application...18
3.2. Overriding Module Software ..21
3.3. Module Welcome Application..21
3.4. Interrupt Handler Interaction...22

4. Software API Extension..23

4.1. Checking Presence and Version of Handspring Extensions...23
4.2. Utility Calls ..23
4.3. Generic Module Support in Palm OS..24
4.4. Copy Protecting Module Applications...24
4.5. API Calls...25

4.5.1. HsAppEventHandlerSet... 26

Springboard Development Guide for Handspring Handheld Computers

- 5 -

4.5.2. HsAppEventPost... 27
4.5.3. HsCardAttrGet ... 28
4.5.4. HsCardAttrSet .. 31
4.5.5. HsCardErrTry/HsCardErrCatch.. 32
4.5.6. HsCardEventPost ... 34
4.5.7. HsCardPatchInstall... 35
4.5.8. HsCardPatchPrevProc ... 36
4.5.9. HsCardPatchRemove ... 37
4.5.10. HsDatabaseCopy .. 38
4.5.11. HsEvtResetAutoOffTimer ... 40
4.5.12. HsPrefGet ... 41
4.5.13. HsPrefSet .. 43

5. Springboard Interface Pinout and Signal Description..45

5.1. Pinout ...47
5.2. Signal Descriptions..48

6. Electrical Specifications..50

6.1. DC electrical characteristics..50
6.2. AC Characteristics ...51

6.2.1. General Information on Springboard Timing.. 51
6.2.2. Read Cycle... 52
6.2.3. Write Cycle ... 53
6.2.4. Reset Timing... 54

7. Mechanical Information ...55

7.1. Springboard Connector...55
7.2. Geometry of the Springboard Slot ...57

7.2.1. Mechanical Interaction with the Handspring Handheld ... 57

7.3. Springboard Module Base Color ..57

8. Compatibility Testing ..58

8.1. Compatibility Testing Overview ..58

9. Springboard Trademarks and Logos ...59

9.1. Springboard Trademarks and Logos Overview...59
9.2. Trademarks ..60
9.3. Logos ..62

Springboard Development Guide for Handspring Handheld Computers

- 6 -

10. Handspring Developer Agreement ..67

Springboard Development Guide for Handspring Handheld Computers

 - 7 -

1. Springboard Software Development

The key factor that makes the SpringboardTM Expansion Slot a compelling platform is its plug-and-play
functionality. The Springboard Expansion Slot allows different modules to be inserted and removed from a
handheld computer at any time. To support this functionality, Handspring has created extensions to the standard
Palm OS® in order to enable new, specialized hardware and software.

These extensions allow you to:

• Detect the insertion of a module.

• Load applications and appropriate drivers stored on the module.

• Cleanly remove software when the module is removed.

This functionality correctly implements plug-and-play for the handheld computer.

Application software that resides in a module’s memory is “executed in place”, just like applications in the device’s
internal ROM or RAM. With this design, the Palm OS jumps directly to program code, rather than “loading” an
application into memory and “jumping” to the appropriate code. This execute in place architecture is well suited
to handheld devices in which memory and processing power are scarce resources.

The Springboard Expansion Slot builds on this architecture by directly mapping the module into the CPU
memory map. Access to hardware in the handheld and on the module is conducted in exactly the same way. To
support full plug-and-play functionality, the system allows for removal of a module while it is running an
application. The user is automatically switched out of the module application and back to the Application
Launcher, as necessary.

Because the Springboard Expansion Slot is a direct extension of the CPU’s parallel bus, modules can also be
designed that contain specialized hardware to address new markets not being addressed by the handheld computer
today (e.g., communications, entertainment, and professional markets).

This guide describes the Springboard Expansion Slot, and provides you with the information necessary to:

• Implement “application-only” products on a Springboard-compatible memory module.

• Design Springboard-compatible modules with specialized hardware and the applications to support them.

1.1. Software Development for Handspring Handhelds
There are three general categories of software development for Handspring handhelds. Each category has
different requirements, as described in greater detail in the sections that follow. The three categories are:

Generic Applications: These applications execute from the Handspring handheld’s internal memory.

Examples: Any of the utilities, games, and other applications that can be downloaded for use on Palm OS-
based devices.

Generic Applications on a Springboard Module: These applications execute from a Springboard memory
module. Inserting a module provides instant access to the application, eliminating the need to download and
install software.

Example: A Palm OS game that is distributed on a Springboard module to accommodate retail
distribution.

Special Purpose Applications: These applications access specialized hardware on the Springboard module.
Additionally, a “special purpose” application may also install interrupt handlers and other system modifications in
support of the module hardware. All the software necessary to operate the module is resident on the module itself,
eliminating the need to download and install software and drivers.

Example: Imaging software and drivers to operate a Springboard camera module.

Springboard Development Guide for Handspring Handheld Computers

- 8 -

1.2. Generic Applications
There are various development environments for Palm OS-based systems. The two primary tools available are the
Palm OS GNU Tools and Metrowerks' CodeWarrior. Following is an overview of these tools. For more detailed
information, or to download these tools, go to the Handspring website at:

http://www.handspring.com/developers/sw_dev.jhtml

1.2.1. Handspring Palm OS GNU Tools
GNU Tools are based on the UNIX environment and are based on a Bash shell command line driven system. If
you're accustomed to UNIX development, this will be very familiar. To develop for Handspring handhelds you
must use Handspring's GNU Tools, which use the Windows-compatible Cygnus Cygwin shell. Handspring has
also developed a Microsoft Visual C++ project file that calls the GNU Tools. With this approach, you combine
the ease of using an IDE with the flexibility of open source development tools. A complete description of the tools
is included with the download. These tools are currently available for download from Handspring for use in the
Windows environment.

1.2.2. Metrowerks CodeWarrior
Metrowerks CodeWarrior is an integrated development environment with a graphical interface that allows for
easier generation of forms. It also provides a utility for automatically managing files and resources. The "lite"
version -- which doesn't allow for software distribution -- is free to download. The full version can be purchased
from Metrowerks. These tools are currently available from Palm for use in both the Windows and Macintosh
environments. The Handspring Extension header files are available from the Handspring website and are
included in the R6 version of CodeWarrior.

1.2.3. Other Development Environments
The Palm developers’ tool web site (http://www.palmos.com/dev/tech/tools/) contains information on other
development environments available for the Palm OS.

Developing software for Handspring handhelds is the same as developing for other Palm OS-based systems. For
example, Visor™ is based on Palm OS 3.1, so documentation covering standard Palm OS development is
applicable. The Palm developers’ documentation web site (http://www.palmos.com/dev/tech/docs/contains a
variety of references covering standard Palm OS development.

1.3. Generic Applications on a Springboard Module
If you are an application developer who wants to transfer your application to a non-volatile Springboard memory
module, you simply need the Palm-MakeROM tool as described in the Handspring Development Tools Guide to
build a ROM image. Third-party suppliers can use your ROM image to program memory modules in quantity.

For development purposes, you can also use Handspring’s 8MB Flash Module. This module, available through
our web site, is a run-time read-only memory-based module that can be re-programmed using the Palm
Debugger. Details about the Palm Debugger can be found in the Handspring Development Tools Guide. Handspring
includes an application (FileMover) with the module that enables users to transfer any application between
internal and module memory. Handspring has also developed the CardUpdaterMakerSDK that provides an easy
way for developers to generate a utility that customers can use for updating a Flash module.

Since the Springboard memory modules can be removed at any time during execution, there are some
considerations to take into account when designing your application. Specifically, software that uses shared
libraries or installs system modifications (e.g., interrupt handlers) should be configured properly to work with the
plug-and-play features of the Springboard Expansion Slot. Refer to the section entitled Application development to
support plug-and-play for a more detailed description.

http://www.handspring.com/developers/sw_dev.jhtml
http://www.palmos.com/dev/tech/tools/
http://www.palmos.com/dev/tech/docs/

Springboard Development Guide for Handspring Handheld Computers

- 9 -

You might want to consider designating a Welcome application on your module. This application would be
launched automatically when your Springboard module is inserted in a handheld. Refer to the section entitled
Module Welcome application for a description of the Welcome application.

Finally, applications that execute from a Springboard memory module (i.e., masked ROM, Flash, and OTP) are
usually based on read-only memory and should be designed appropriately.

1.4. Special Purpose Applications
If you are building a Springboard module with special hardware, you must use the new Handspring API standard.
This API (along with other necessary information to build Springboard-compatible modules) is explained in the
next sections.

The Developer section of Handspring’s web site contains source code examples for Springboard module
applications that have been developed using the Handspring Palm OS GNU Tools. These examples show how to
develop more sophisticated applications that install interrupt handlers or OS patches when the associated module
is plugged into the Springboard Expansion Slot. These examples have been fully tested at Handspring and can be
used as a baseline for application development.

1.5. Application Development To Support Plug-and-Play
The Springboard Expansion Slot supports true hot plug-and-play of removable modules. You can insert or
remove a module at any time, regardless of the current state of the machine and regardless of which application is
currently running. When a module is inserted, software resident on the module becomes immediately available.
To enable this functionality, all modules must have a valid header generated by the Palm-makeROM utility, as
described in the Handspring Development Tools Guide.

To support custom hardware on a Springboard module (e.g., the UART in a modem module), shared libraries
and other system extensions are typically required. Handspring provides a mechanism for specifying a module
Setup application. If it is present when the module is inserted, the Setup application is copied to internal memory,
then executed. When the module is removed, the Setup application is executed again to handle removal of the
module’s software. The system then deletes the Setup application from internal memory.

If desired, the module manufacturer can also designate one of the applications in the ROM as a module Welcome
application, which is automatically launched whenever the module is inserted (after the Setup application is run).

Generic applications are those that typically do not patch any system trap calls, install shared libraries, or install
interrupt handlers. The vast majority of existing Palm OS applications fall into this category. Hot plug-and-play
support works with most generic applications without modification. If a generic application is running on or using
a module when it is removed, the system transparently and cleanly switches the user back to the Application
Launcher.

Special-purpose applications are those that change system functionality by patching system trap calls, installing
shared libraries, or installing interrupt handlers. These applications cannot support true hot plug-and-play unless
the module contains a Setup application that is responsible for installing and removing the appropriate libraries,
patches, and handlers. Without a Setup application, the system is forced to soft-reset the device when the module
is removed to maintain stability. The Special-Purpose Applications section below describes how to design these types
of applications to be fully compatible with hot insertion and removal.

1.5.1. Generic Applications
Generic Palm OS applications that are placed onto a memory module -- such as the 8MB Flash Module -- are
supported by hot plug-and-play without modification. Depending on the application, there are rare instances in
which the application might get “confused” when it is re-launched after a module is pulled out and re-inserted.
Designing an application to avoid this possible problem is straightforward. The following precautions are good
design practices, and ensure that an application can be successfully re-launched after any soft reset (which can
occur any time a user presses the soft reset button).

Springboard Development Guide for Handspring Handheld Computers

- 10 -

There are two cases to consider when designing your application:

• The current application is executing out of module memory when the module is removed.

• The current application is using the module memory when the module is removed.

In these instances, the operating system is forced to abort the application and clean up any resources in use by the
application. It does this by closing all databases that are still open. Normally a problem is not encountered unless
the application was in the middle of writing out changes to a database it owns. If the module is pulled out during
this time, the application's database could be left in a partially updated state. This could cause the application to
be confused or even crash the next time it executes and re-uses that database. This window of vulnerability is very
small in most applications; it typically occurs only after dismissing a dialog or choosing a menu item (e.g., to
create or delete a new record). It is unlikely, although possible, that a user would pull a module out during this
period of time.

For an application to protect itself from this potential problem, it must perform some simple checks whenever it
re-opens a database it owns. For example, the application could set a valid bit in a record as the last step in
updating the record. If the valid bit is not set when re-reading the record, the record can be automatically fixed or
simply deleted. This process also ensures that the application can survive any soft reset.

1.5.2. Special-Purpose Applications
As mentioned above, products that extend system functionality by installing system patches, shared libraries, or
interrupt handlers should not be placed on a removable module unless it includes a module Setup application. If
there is no Setup application, the system is forced into a soft reset when the module is removed.

Typically, software of this nature is placed on a module in order to provide access to special hardware on it. The
system looks for the Setup application when the module is installed and automatically copies it into the built-in
RAM of the device. The system calls the Setup application with an “install” message. The Setup application
can then install interrupt handlers, system patches, shared libraries, or whatever else is required in order to
support the module and its hardware. All of the code to support these system extensions must either be present in
the Setup application or initially copied into built-in RAM by the Setup application before being installed into the
system.. This architecture is more fully described in Module Insertion Notification.

When a module is removed, the system again calls the Setup application with a “remove” message, giving the
Setup application the opportunity to remove all hooks it had previously placed into the system. Note that this
function call happens after the module is removed, because it is the actual removal that interrupts the OS, which
in turn calls the Setup application. The module has typically been removed when the Setup application is called,
so it must not be used to set the module’s hardware in a certain mode. If this operation is needed, the module
must do this operation itself. After the Setup application completes the remove operation, the system deletes the
Setup application from the handheld’s built-in memory.

The system patches, interrupt handlers, and libraries that are installed by a Setup application will often need to
access special hardware devices on the module itself. Handspring provides calls that ensure that system extension
code can gracefully detect and recover from a module removal at any time. These calls are more fully described in
Catching Module Removals.

The system extension code installed by the Setup application may also need to install or process interrupts and
handle power management functions. Handspring provides API calls (described in API Calls) to manage various
aspects of interrupt and power management control.

Springboard Development Guide for Handspring Handheld Computers

 - 11 -

2. Module Design Details

This chapter describes hardware aspects regarding memory space, interrupts, reset, power management, and
insertion and removal of the modules. It also references the various Module Support API calls provided for
interfacing to the module hardware; these calls are described in API Calls.

2.1. Module Memory Space
The figure below shows how memory within a Springboard module is mapped into the memory space of the
handheld. Note that the base address and size may change in future products. You should use the
hsCardAttrCsBase attribute of the HsCardAttrGet() call to obtain this information dynamically at run-time in
order to ensure that your module software remains compatible with future revisions of the base unit and/or
system software. The beginning of the module ROM is expected to be at this base address (0x2800 0000).

Two chip select lines, called CS0* and CS1* (* indicates an active low signal), are output to the Springboard
module. By default, when a new module is inserted, the system assigns 16MB of address space to each chip select.
The address space for CS0* is referred to as csSlot0; the address space for CS1* is referred to as csSlot1
(therefore, csSlot1 starts at csSlot0 + 16MB).

Figure 2-1. Module Memory Map

CsSlot1 Memory Space
(signal name is CS1*)

CsSlot0 Memory Space
(signal name is CS0*)

Basic Internal Memory Space
Used By Handheld

Programmable size using
hsCardAttrCsSize

Programmable size using
hsCardAttrCsSize

32MB
maximum

hsCardAttrCsBase

0x0000 0000

(default 16MB)

(default 16MB)

Each chip select is configured to address 16-bit wide memory devices. The ROM in the module must reside at the
beginning of csSlot0 and must be 16 bits wide in order for the system to recognize the module. The system makes
no assumptions about what resides at csSlot1.

You can use the HsAppEventHandlerSet() and HsCardAttrSet() calls to query or change the csSlot0 and csSlot1
address ranges via the hsCardAttrCsSize attribute. The ranges can be set to any power of two between 128KB and
16MB, but both ranges must be set to the same size. csSlot1 always starts immediately after the csSlot0 range. If,

Springboard Development Guide for Handspring Handheld Computers

- 12 -

for example, csSlot0 start at address 0x28000000 and you change the size of the chip select address ranges to 1MB
(100000h), then csSlot1 starts at address 0x28100000 and continues up to address 0x281FFFFF.

2.2. Module Access Time and Wait State
When a module is first inserted, the system accesses the ROM at csSlot0 with the maximum number of wait states
allowed by the base unit hardware. Actual wait state definitions may change from system to system. Please refer to
the appropriate Product Guide for wait state parameters for a specific handheld.

Once the system validates the ROM header, it reads a value out of the ROM header that indicates the actual
required access time of the module in nanoseconds, and reprograms the number of wait states accordingly. The
Palm-MakeROM tool places this value into the ROM header through the –tokStr parameter (see the Handspring
Development Tools Guide for details). Both csSlot0 and csSlot1 must have the same number of wait states (a
limitation imposed by the processor itself), so you must set this value to the worst case access time of your ROM
and whatever other hardware is present on your module. The hsCardAttrAccessTime attribute of the
HsCardAttrSet() call can also be used to change the number of wait states dynamically while the module is
inserted. This method might be useful, for example, when temporarily accessing a slow device on your module.

Once the ROM has been validated, the system updates itself so that all applications and databases on the ROM
are available to the system and other applications. All applications in the ROM appear in the Applications
Launcher. If there is a Setup application on the module, it is copied in the handheld’s internal memory and is sent
an “install” message. Then, if the module has a Welcome application, this application is automatically launched
as well.

2.3. Interrupts
IRQ* is a dedicated interrupt line that module hardware can assert to interrupt the CPU. This interrupt is level-
sensitive and active low. The software for the module can install an interrupt handler for this interrupt using the
hsCardAttrIntHandler attribute of HsCardAttrSet(). The module interrupt handler can be written in C or
assembly language. A 32-bit reference parameter is passed to it that you specify in the hsCardAttrCardParam
attribute of HsCardAttrSet() along with a Boolean flag named *sysAwakeP that is passed by reference. Typically
the 32-bit reference parameter is a pointer to a variable which is part of an application’s global data. Note that
while global data is not accessible from an interrupt routine, referencing a variable (or structure) through this
mechanism is allowed. The *sysAwakeP parameter usage is described below in Interrupt Handler Interaction.

In general, the interrupt handler must observe a number of restrictions that all Palm OS interrupt handlers
observe. It cannot allocate, free, or move memory chunks, or allocate any system resources (e.g., semaphores,
timers, and tasks). If asserted when the handheld is in sleep mode, this interrupt wakes it up unless *sysAwakeP
is false.

The hsCardAttrIntEnable attribute can be used at any time to enable or disable module interrupts to the
processor. It must be called after installing the interrupt handler for the first time since interrupts are disabled by
default.

When the module is removed, the system immediately disables further module interrupts (using the
hsCardAttrIntEnable attribute), and sends the “remove” message to the module's Setup application. The Setup
application should then clear the hsCardAttrIntHandler attribute to null to remove the interrupt handler.

Note: The operating system will clear the hsCardAttrIntHandler automatically when the module is removed,
however, it is better practice for the Setup application to do this itself for instances in which the module is
inserted but not used.

2.4. Interrupt Latency
Interrupt latency is likely to vary from product to product. To support multiple generations of handhelds, we
recommend that modules be designed to tolerate the interrupt latency times described below. These parameters

Springboard Development Guide for Handspring Handheld Computers

- 13 -

are three times greater than the measured interrupt latency of the Visor, Handspring’s first product. For latency
measurements of a specific product, please refer to the appropriate Handspring Product Guide.

The three conditions of interrupt latency include: 1) when the device is already awake, 2) the first time the
interrupt handler is called after coming out of sleep mode but before the rest of the system is awake (the
*sysAwakeP parameter is false), and 3) the second time the interrupt handler is called after coming out of sleep
mode, which is after the rest of the system has awakened (the *sysAwakeP parameter is true).

In the third condition, the designer must allow for an additional 20 milliseconds if the OS needs to open the USB
library. Note that this condition only occurs if the USB library was open when the device went to sleep. This
situation is rare because most application will close the USB library before the device goes to sleep.

Table 2-1. Interrupt Latency Examples

Condition
Maximum Springboard

Latency Specification

Device already awake 0.15 ms

Device asleep (*sysAwakeP == false) 4 ms

Device asleep (*sysAwakeP == true) 10 ms

2.5. Power Management
A module can provide software and hardware support for power management. A routine for taking the module
into and out of low power mode can be installed through the hsCardAttrPwrHandler attribute. The operating
system calls this routine whenever the handheld is turned on or off (that is, taken into or out of sleep mode).
Parameters of the routine tell it whether to power up or down. If powering down, a second parameter indicates
the reason. The reason code is either hsCardPwrDownNormal (a normal power down) or
hsCardPwrDownLowVoltage (indicates that this is an emergency shutdown due to low or no battery voltage).
Refer to the Handspring extension header file (HsExt.h) for more information on hsCardPwrDownNormal and
hsCardPwrDownLowVoltage. The actual voltage levels associated with the reason codes may change from
product to product. Please refer to the appropriate Product Guide for more details.

The power handler routine must observe the same restrictions as an interrupt handler because it might be called
from the context of an interrupt routine, particularly when the system performs an emergency shutdown due to
low battery voltage. In addition, a power handler must execute very quickly. When the batteries are removed, the
power handler is executed using only the energy stored in the battery backup capacitor; thus it should do the
minimal amount of work necessary to put the hardware into low power mode before returning. Ideally, this
process involves simply setting or clearing a bit in one or two hardware registers.

The base unit asserts the LOWBAT* signal on the module when the batteries fall below a certain critical
threshold voltage level. In the Visor handheld, power to the module is removed a few milliseconds after the
batteries fall below this critical threshold. The LOWBAT* signal is only valid until power to the module is
removed. When the batteries are replaced, the module is re-powered and a new initialization sequence occurs.

The handler routine is called first and puts the module into its low power state through software. However,
LOWBAT* must be used to prevent the module from asserting its interrupt, IRQ*, so that the module does not
attempt to wake up the device when the batteries are too low for operation.

Springboard Development Guide for Handspring Handheld Computers

- 14 -

2.6. Power Management Options For Interrupt Handlers
Various power-saving options are available to module interrupt handlers. Through return parameters and system
calls that it makes, the interrupt handler can tell the system how much of the hardware to power up as a result of
the interrupt and how long to stay awake before going back into sleep mode.

The *sysAwakeP parameter to the module interrupt handler is a Boolean flag passed by reference that tells the
interrupt handler how much of the system is currently awake. If the device is asleep (“off” from a user's
perspective) when the module interrupts the handheld, the system calls the module interrupt handler first before
it wakes up any of the remaining hardware (e.g., sound, timers, keypad) and passes false to *sysAwakeP. Because
the rest of the system is not yet awake, the interrupt handler cannot make any system calls at this stage, except for
HsCardErrTry/ HsCardErrCatch. If the handler can process the interrupt at this stage, then it needs to clear the
interrupt source and return. The system then immediately puts the system back into sleep mode. This procedure
is the most power-efficient means of processing the interrupt because no other extra hardware is powered up,
while limiting the interrupt handler to simple memory manipulations.

If the interrupt handler is called with *sysAwakeP set to false but needs to make one or more system calls (e.g.,
HsCardEventPost() or SysSemaphoreSet()), then it should set *sysAwakeP and return without clearing the
source of the interrupt. When the system sees *sysAwakeP set upon return of the module interrupt handler, it
continues the wake-up sequence and wakes the rest of the system (except for the LCD). Once the system wake-up
is completed, it calls the module interrupt handler again with *sysAwakeP set true. At this stage, the interrupt
handler is free to make any system calls that are normally valid from interrupt handlers.

Before the interrupt handler returns from being called with *sysAwakeP set true, it has the additional option of
telling the system whether or not to turn on the LCD, and how long to stay awake before returning to sleep
mode. To do this, the handler calls HsEvtResetAutoOffTimer(). If the handler does not call
HsEvtResetAutoOffTimer() before exiting, the default behavior of the system is to return to sleep mode on the
next call to EvtGetEvent() by the current application. Typically, this occurrence is on the order of tens or
hundreds of milliseconds, depending on the current application's event loop.

The HsEvtResetAutoOffTimer() call takes two parameters: a stayAwakeTicks value and a userOn Boolean
for controlling the LCD. The stayAwakeTicks tells the system the minimum amount of time to stay awake
before going back to sleep mode. This value is specified in system ticks; however, keep in mind that the system
checks the timer approximately every five seconds to verify if it needs to put itself in sleep mode. Passing (-1) tells
the system to stay awake for the current auto-off setting indicated in the General Preferences panel. If the
interrupt handler wants the LCD to turn on, it sets the userOn Boolean. The interrupt handler sets the userOn

Boolean if it has just posted an event through HsCardEventPost() that results in an alert being displayed or other
user interface activity.

2.7. Module Insertion Notification
When a module is inserted, the handheld will attempt to read a valid header for up to ~3 seconds. If a module is
already plugged in during a device reset, all applications and panels on the module are sent the standard Palm OS
reset action code (sysAppLaunchCmdSystemReset), as are all normal built-in applications and panels.

When a module is hot-inserted at run time, the system also broadcasts the reset action code, but only to
applications (not panels) on the module that have the dmHdrAttrResetAfterInstall bit set in their
database header. This behavior ensures that applications requiring the reset notification are notified, without
unnecessarily slowing down the module insertion process by calling every application and panel on a module
when it is inserted.

This is a slight modification to the original purpose of the dmHdrAttrResetAfterInstall bit in the
database header. Its original purpose was to tell HotSync® to soft reset the device after one or more of these
“reset-after-install” applications are installed onto the device. During the reset sequence, all applications (and thus
the ones just installed) are sent the reset action code. However, when present on a module application, this bit
now indicates that the application wants to receive the reset action code after the module is inserted. Thus, the

Springboard Development Guide for Handspring Handheld Computers

- 15 -

application receives the reset action code, even though the system has not really gone through a soft reset. This
particular behavior was chosen for maximum compatibility with most existing applications. Unfortunately a small
subset of applications might be confused by it.

Figure 2-2. Operational Flowchart when Inserting a Module

Start

W as a m odule detect
interrupt generated?

Power is slowly applied to
the m odule by the handheld
hardware and the OS resets

the m odule.

The OS reads the m odule
header inform ation and

updates the globals for the
Launcher application.

Is there a Setup
application?

Is there a W elcom e
application?

All visible applications
appear in the Launcher

application.

Execute W elcom e
application directly from

m odule m em ory.

Copy Setup application into
internal m em ory and execute
it with the install launch

code.

All applications on the
m odule with the

dm HdrAttrResetAfterInstall
bit set in its database header
are sent the reset launch

code.

NO

YES

NO

NO

YES

YES

Springboard Development Guide for Handspring Handheld Computers

- 16 -

2.8. Catching Module Removals
In all cases, when a module is removed, an interrupt is generated and the base address for the module chip selects
are disabled. What happens next depends on the design of the currently executing application.

There are three cases to consider when a module is removed:

Case 1: An application is executing from handheld memory, and is not accessing module memory or any shared
libraries resident on the module. If the Setup application was installed (copied into the handheld memory when
the module was inserted), it is executed with a “remove” launch code. The system then deletes the Setup
application and control passes back to the previously executing application.

Case 2: An application is running on the module memory and does not use shared libraries. If a program is
executing from module memory during a removal, a bus error will occur when the CPU attempts to fetch and
execute the next instruction code from the module. The bus error trap causes control to be passed to the system
bus error handler. The system does not force a soft-reset because no libraries were opened. If the Setup
application was installed (copied into the handheld memory when the module was inserted), it is executed with a
“remove” launch code. The system then deletes the Setup application and control passes back to the Application
Launcher.

Case 3: If an application is using shared libraries, you must take precautions to catch bus errors when the library
attempts to access the module after it has been removed. If the system detects that a library is still open when the
module is removed, it will force a soft-reset to ensure stability.

To handle these situations, Handspring provides the HsCardErrTry/HsCardErrCatch macros. These macro calls
should be wrapped around any code in your interrupt routines, shared libraries, or system extensions that access
memory or other hardware devices on the module. Alternative methods of using the Try and Catch macros are
discussed in detail in the Application Note referenced below. Developers should ensure that all of the code in the
Try and Catch routine is executed. You cannot return out of the Try and Catch section, as it will corrupt the
stack if a module is removed.

If a module is removed when code in the HsCardErrTry section is executing, a bus error occurs and the system
automatically passes control to the HsCardErrCatch section. You can then look at various local variables that you
have set up to determine the best course of action to take in dealing with the module removal.

In Handspring handheld devices using PalmOS 3.5 or greater, you can simply set a flag that indicates the module
has been removed and wait for your Setup application to be called with the “remove” message. Your Setup
application should then close any open libraries and uninstall all module-dependent hooks that you have placed
into the system. For systems using PalmOS 3.1, you must close the libraries manually in the HsCardErrCatch
block.

Further details about these macros can be found in application notes (AN-02: Springboard Soft Reset Protection)
on Handspring’s website:

http://www.handspring.com/developers/tech_notes.jhtml

Note: Database record “busy” bits will be automatically cleared if the database is open when the system bus error
handler responds to an unexpected card removal.

http://www.handspring.com/developers/tech_notes.jhtml

Springboard Development Guide for Handspring Handheld Computers

- 17 -

Figure 2-3. Operational Flowchart when Removing a Module

Start

W as a m odule detect
interrupt generated?

Is there a Setup
application?

Soft-Reset device to protect
system stability.

Run Setup application with
remove code. Developers

can close libraries and
rem ove system patches

here.

Is there a library open?

YES

NO

YES

YES

NO

NO

The OS deletes the Setup
application and updates

globals to reflect the rem oval
of the m odule and its

applications.

Switch to appropriate
application (previous or

Launcher)

Springboard Development Guide for Handspring Handheld Computers

 - 18 -

3. Springboard Software Integration

Modules that simply provide additional user applications in ROM are straightforward to design and construct;
modules that provide additional hardware functionality often involve interrupt handlers, shared libraries, and/or
system extensions to enable other applications or system software to use the new hardware. The most critical
portion of software design for a module is probably the operation and interaction of these various pieces with each
other and the rest of the system.

For example, a pager module might have an interrupt routine that fires off whenever a page comes in. That
interrupt routine might have to store the contents of the incoming page and then decide whether or not to inform
the user that a message has arrived. To inform the user of the message, it might simply display an alert on the
screen (similar to a Datebook alarm going off) and/or cause a switch to a “Pager” application at which the user can
view and manage the incoming pages.

This chapter provides an overview of how interrupt routines and other system extensions interact with module
hardware, application code, and the rest of the system. It also references some of the API calls provided for these
purposes. The most important thing to remember about interrupt handlers, shared libraries, and system
extensions is that their code must be copied into main memory before they are installed into the system. If they are
not, the system cannot recover from a module removal situation without forcing a soft reset. The handlers can,
however, access memory or other devices on the module as long as they follow the guidelines described in
Catching Module Removals. The module Setup application mechanism provides a convenient method for copying
these types of code into the handheld internal memory before installation.

3.1. Module Setup Application
Any module that provides custom hardware and software to access the hardware usually requires a module Setup
application. The Setup application installs any system extensions, interrupt handlers, shared libraries, system trap
patches, etc. that are necessary for using the new hardware. It is also responsible for uninstalling them when the
module is removed.

Because the Setup application is copied into the main memory before it is executed, complete installation and
removal of the module software is guaranteed, even if the module is removed prior to or during installation. Note
that the module has already been removed when the Setup application is called to uninstall. When a module is
inserted or when the device is reset, the operating system automatically queries the module ROM to determine if
there is a Setup application for the module. If a Setup application exists, the operating system copies it into main
memory and then executes the Setup application by sending it an install message. Likewise, when the module
is removed, the system calls the same Setup application, sends it a remove message, then deletes the Setup
application itself.

A Setup application is built like any other Palm OS application, except that it must be given a special database
creator (HsSU) and type (HsCd). The Handspring website contains several Software Development Kits (SDKs)
that include samples of Setup applications:

http://www.handspring.com/developers/sw_dev.jhtml

A module Setup application is called with one of two action codes sent to its PilotMain():
hsSysAppLaunchCmdInstall or hsSysAppLaunchCmdRemove. In both cases, the cmdPBP parameter
block passed to the application is a structure pointer containing the card number that has been inserted or
removed. In this context, card number is the standard Palm OS cardNo parameter used by function like
DmCreateDatabase(UInt cardNo, ...). Usually the Setup application saves this card number in its
globals that it allocates during the install. Refer to the Handspring extension header file (HsExt.h) for more
information on hsSysAppLaunchCmdInstall and hsSysAppLaunchCmdRemove.

The parameter block passed during the hsSysAppLaunchCmdInstall action code also contains an isReset
field. This value is true (non-zero) only if the install action code is being sent as a result of the device going

http://www.handspring.com/developers/sw_dev.jhtml

Springboard Development Guide for Handspring Handheld Computers

- 19 -

through a soft or hard reset. Most Setup applications can safely ignore this field because their actions are
independent of whether or not the module was inserted before the reset. If the module was inserted before the
reset, any shared library or other databases that the Setup application normally copies to built-in RAM are already
present in built-in RAM. There is no harm in copying them from the module again.

During installation and removal processing, a Setup application is not allowed to use global or static application
variables; all variables must be normal stack- or register-based local. This is the same restriction that is placed on
other Palm OS applications when processing other system action codes, such as find or goto. However, most
module software requires globals of some kind. These globals are most likely shared by the module's interrupt
handler, applications, and other extensions. The hsCardAttrCardParam attribute of the module is provided for
this purpose. Use this attribute to store a 32-bit pointer to the module's globals; it can be set using
HsCardAttrSet() and retrieved using HsAppEventHandlerSet(). In addition, this attribute is automatically passed
to the module's interrupt handler as a parameter on the stack.

If the module Setup application needs to install a shared library that is in a separate database on the module, it
must first copy the shared library database from the removable module into main memory before installing the
library. Likewise, it should delete the library from main memory during removal processing. The library database
can be easily copied into memory using the HsDatabaseCopy() routine.

If a module Setup application needs to patch any system traps, it must use the HsCardPatchInstall() routine to
install them. It should not use SysSetTrapAddress(). Using HsCardPatchInstall() ensures that the patch can be
safely removed using HsCardPatchRemove() during removal processing without interfering with other third-
party extensions that may have been activated or de-activated (using an application like HackMaster) in the
meantime.

If a module Setup application installs an interrupt handler, event handler, or system patch from its own code
segment (a subroutine linked in with the Setup application itself), it must be sure to lock down its code segment
before returning from the install action code. This precaution ensures that its code segment is not inadvertently
moved by the Palm OS memory manager while the module is installed. The following portion of code performs
this operation:

// Because we installed a patch from this code resource, make sure
// this code resource remains locked down after we exit.
VoidHand codeResH;
codeResH = DmGet1Resource ('code', 1);
if (codeResH) MemHandleLock (codeResH);

Similarly, during the remove action code the module Setup application should restore the lock count of the code
resource as follows:

// Restore lock count of code resource
VoidHand codeResH;
codeResH = DmGet1Resource ('code', 1);
if (codeResH) MemHandleUnock (codeResH);

A typical module Setup application allocates a memory chunk for the module's globals using MemPtrNew(),
resets the owner of this chunk to 0 using MemPtrSetOwner(), then stores the returned pointer in the
hsCardAttrCardParam attribute of the module. A code example follows:

DWord
PilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{
 void* globalsP;
 Err err;
 VoidHand codeResH;

 if (cmd == hsSysAppLaunchCmdInstall)
 {
 HsSysAppLaunchCmdInstallType* installP;

Springboard Development Guide for Handspring Handheld Computers

- 20 -

 installP = (HsSysAppLaunchCmdInstallType*)cmdPBP
 globalsP = MemPtrNew (sizeof (MyGlobalsType));
 if (globalsP)
 {
 MemPtrSetOwner (globalsP, 0);
 globalsP->cardNo = installP->cardNo;
 HsCardAttrSet (globalsP->cardNo, hsCardAttrCardParam,
 &globalsP);
 }

 // Install shared libraries using SysLibInstall()
 // ...
 // Patch system traps using HsCardPatchInstall()
 // ...
 // Install interrupt handler using
 // HsCardAttrSet(globalsP->cardNo, hsCardAttrIntHandler, ...)
 // ...
 // Enable module interrupts using
 // HsCardAttrSet (globalsP->cardNo, hsCardAttrIntEnable, ...)
 // ...

 // Because we installed a patch from this code resource, make sure
 // this code resource remains locked down after we exit.
 codeResH = DmGet1Resource ('code', 1);
 if (codeResH) MemHandleLock (codeResH);
 }

 else if (cmd == hsSysAppLaunchCmdRemove)
 {
 HsSysAppLaunchCmdRemoveType* removeP;

 removeP = (HsSysAppLaunchCmdRemoveType*)cmdPBP
 err = HsCardAttrGet (removeP->cardNo, hsCardAttrCardParam,
 &globalsP);
 if (!err && globalsP)
 MemPtrFree (globalsP);
 // Remove shared libraries using SysLibRemove()
 // ...
 // Restore system traps using HsCardPatchRemove()
 // ...
 // Restore lock count of our code resource
 codeResH = DmGet1Resource ('code', 1);
 if (codeResH) MemHandleUnlock (codeResH);

 }

 return 0;
}

Another restriction placed on a module Setup application occurs when it is called with the “remove” message.
When this happens, it cannot display any alerts (using FrmAlert() or similar mechanism) or make system calls
that might display user interface (UI) elements or process user interface events. The “remove” action code can
be sent to the Setup application after the current application has aborted but before a new application is launched;
therefore the system might not be in a state to process user interface events. The install action code, however,
does not have these restrictions. It can display alerts or progress dialogs if it wishes to because it is always called
from the context of the current application's main event loop.

By the time the Setup application is called with the “remove” message, it can assume that the system has already
done the following:

1. Disabled module interrupts by resetting the hsCardAttrIntEnable attribute to 0.

2. Removed the module interrupt handler by resetting the hsCardAttrIntHandler attribute to 0.

Springboard Development Guide for Handspring Handheld Computers

- 21 -

3. Removed the module event handler by resetting the hsCardAttrEvtHandler attribute to 0.

4. Removed the module's power handler by resetting the hsCardAttrPwrHandler attribute to 0.

Note: The operating system will clear the hsCardAttrIntHandler automatically when the module is removed;
however, it is better practice for the Setup application to do this itself for instances in which the module is
inserted, but not used.

One condition to consider is when the user replaces the main batteries. In this case, the module Setup application
may not be executed until the device is powered on. This may have design implications for developers who want
to put the module into a low power state through the Setup application.

Note: The Setup application can be bypassed by holding down the Up button during module insertion.

3.2. Overriding Module Software
The basic principle behind Handspring’s removable modules is that all of the module software and hardware
resides on the module itself. In this way, a module inserted in any handheld is immediately functional without
requiring any manual software installation or configuration. Also, most modules will be built with masked ROM
in order to keep costs to a minimum. In the unfortunate event that a bug is discovered after a masked ROM
module has been released, however, you may need to provide a software patch for users of your module.

By taking special precautions in the design of your Setup application, you can minimize the need to design and
implement a software patch for your module. For example, suppose your module copies a shared library from the
module ROM to internal memory. Instead of blindly copying the shared library from the module to internal
memory, your Setup application should first check internal memory for a newer version of that library. If a newer
version already exists in internal memory, you can skip copying the version from the module. Use the
DmGetNextDatabaseByTypeCreator() call in these situations; it automatically searches for the latest
version of a database by type and/or creator. If you find the newer version in internal memory (card number
0), then you can skip copying the database from the module.

Note: Always register your database creator IDs with 3Com Developer Support to ensure that they are unique.

3.3. Module Welcome Application
Whenever a module is inserted, and after copying and executing the Setup application (if present), the system looks
for a Welcome application on the module. This application is a normal Palm OS application with
“CardWelcome” as the database name. If this application is found, the OS automatically switches to it. For
example, this application could be a module-specific application launcher or an application that lets you set
preferences for the module. Because it is a normal Palm OS application, it appears in the Palm OS applications
launcher and can be accessed through the launcher anytime after the module has been inserted. The name that
appears in the Palm OS application launcher for this Welcome application can be set up in the “tAIN” resource
of the welcome application --the same as for other Palm OS applications. This launcher’s visible name in the
“tAIN” resource is independent of the actual database name of “CardWelcome.”

Note: The Setup application can be bypassed by holding down the Up button during module insertion.

If a module is inserted during a soft or hard reset, the system does not automatically switch to the Welcome
application. You can, however, override this behavior and have the Welcome application launch automatically
during a reset. To do this, include the “HsWR” token in the module's ROM. To include this token, specify it on
the command line to the Palm-MakeROM tool (for example, -tokStr “HsWR” “1”, launches the Welcome
application after a reset) as described in the Handspring Development Tools Guide.

Note: In Handspring handhelds running Palm OS 3.5 or later, the Welcome application can also be specified by
type and creator if the “HsWt” token is present (for example, -tokStr “HsWt” “applHsIm” will launch an
application with type appl and creator HsIm). Developers should use the method described above which will

Springboard Development Guide for Handspring Handheld Computers

- 22 -

work in both Palm OS 3.1 and 3.5 devices to provide compatibility for the widest range of systems. Finally, the
HsWt option cannot be disabled through compiler options.

3.4. Interrupt Handler Interaction
All interrupt handlers in the Palm OS must observe a number of restrictions:

• They cannot allocate, free, or move memory in any memory heap

• They cannot create, modify, or delete databases

• They cannot create, delete, or block system resources such timers, tasks, or semaphores

• They cannot display any user interface.

About the only thing an interrupt handler can safely do is change the contents of pre-allocated, locked memory
blocks, queue keyboard events, or trigger system semaphores. In addition, interrupt handlers must execute as
quickly as possible in order to maximize user-responsiveness of the device and minimize the chances of adversely
interfering with other interrupt response times.

One of the first tasks of any module interrupt handler is to remove the source of the interrupt. This step usually
involves reading a register on the module that effectively deasserts the interrupt line. Module interrupts are level-
sensitive and unless the module interrupt handler removes the source of the interrupt by the time it exits, the
interrupt handler is immediately re-executed.

Next, the module interrupt handler usually processes and/or stores some data regarding the interrupt. For this
purpose, it usually needs a pointer to some global data containing one or more buffers and/or counters. This
pointer must have been allocated in advance by application or setup code. Usually, this type of buffer is allocated
during initialization time using MemPtrNew() and is set to have an owner ID of 0 (using MemPtrSetOwner) to
prevent the system from freeing it when the current application quits. Module interrupt handlers are passed a 32-
bit parameter on the stack, which is set up through the hsCardAttrCardParam attribute of the HsCardAttrSet()
call. Usually this parameter is the globals pointer for the interrupt handler.

Finally, in may be necessary for the interrupt handler to notify the system or an application that an event of
particular interest has occurred. In particular, if an alert or similar message needs to be displayed, the interrupt
handler must rely on application or system code to display it after the interrupt handler returns, because interrupt
handlers themselves are not allowed to have any user interface. Typically the interrupt handler uses the
HsAppEventPost() system routine to trigger the user interface.

Note: Refer to Power Management Options for Interrupt Handlers for important information about when it is safe to
make system calls from a module interrupt handler. System calls cannot be made from a module interrupt handler
if the *sysAwakeP parameter passed to it is false.

The interrupt handler can use the HsCardEventPost() call to post a module event. This call accepts an event
number between 0 and hsMaxCardEvent and a 16-bit event parameter. After the interrupt handler exits and
control is returned to the main event loop, the system calls the module's CardEvtHandler() with the given
event number and 16-bit event parameter. CardEvtHandler() is installed through the hsCardAttrEvtHandler
attribute of HsCardAttrSet(). For convenience, the CardEvtHandler() is also passed a copy of the same 32-bit
parameter that the interrupt handler gets (the interrupt handler globals).

Because CardEvtHandler() executes from the context of the main event loop, it has no restrictions as far as
allocating memory or making other system calls. It can put up an alert, call SysUIAppSwitch() to cause a
switch to another application, or do anything else it desires. It is important to note that the CardEvtHandler()
function executes in the context of -- or is effectively called from -- the current UI application. For this reason,
the module event handler function should keep its stack usage (e.g., local variables or nested function calls) to a
minimum.

Springboard Development Guide for Handspring Handheld Computers

 - 23 -

4. Software API Extension

This chapter describes in detail the calling conventions and parameters for each of the Handspring API calls.

For a description of how and where to use most of these calls, refer to the section entitled Module design details,
and the chapter entitled Springboard Software Integration. The use of the remaining generic utility calls provided
by Handspring is described in Utility Calls.

The header file “HsExt.h” provided with the development tools contains all the public equates referenced in this
chapter, including all constants, structure definitions, function prototypes, etc.

4.1. Checking Presence and Version of Handspring Extensions
For application code or other types of code that might be installed onto both Handspring devices and non-
Handspring Palm OS devices, you must first ensure that you are on a Handspring device before making
Handspring-specific API calls. Use the FtrGet() call of Palm OS and check for the presence of the Handspring
extensions feature. The hsFtrCreator and hsFtrIDVersion constants that are passed to FtrGet() are
defined in the Handspring header file HsExt.h. For example:

DWord value;
err = FtrGet (hsFtrCreator, hsFtrIDVersion, &value);
if (!err)
 {
 // Since FtrGet() did not return an error, we can
 // safely make Handspring specific API calls like
 // HsCardAttrGet(), HsCardAttrSet(), etc.
 }

If FtrGet() returns no error, then the Handspring extensions are present and it is safe to call any Handspring
API call that is described in this chapter. The current version level of the Handspring extensions is returned in the
value parameter. It is encoded as 0xMMmfsbbb, where MM is the major version number, m is the minor
version number, f is the bug fix level, s is the stage (3-release, 2-beta 1-alpha, 0-development) and bbb is the build
number for non-releases. For example, Version 2.00a2 would be encoded as 0x02001002, where the major version
number is 02, the minor version number is 0, the bug fix level is 0, the stage is alpha, and the build number is 0x2.

Because the format used for the version number of the Handspring extensions is the same as that used for the
Palm OS ROM version number, your code can use version macros such as sysGetROMVerMajor and
sysGetROMVerMinor (defined in SystemMgr.h of the Palm Computing Platform SDK) for decoding the
version number of the Handspring extensions.

Another Handspring feature provides the modification date of the Handspring extensions. This feature has an ID
of hsFtrIDModDate (replaces hsFtrIDVersion in the above example). The value of this feature changes with
every release of the Handspring extensions, regardless of whether or not new features were added. Thus you
should use it for informative purposes only. If your software makes decisions based on a certain version or feature
of the Handspring extensions in order to run, it should use the hsFtrIDVersion feature instead.

4.2. Utility Calls
Besides the API calls that are provided specifically for dealing with removable modules, the Handspring utility
functions described in this section are not necessarily module-related.

The HsDatabaseCopy() call can be used to copy a database from a module to built-in memory, from built-in
memory to a module, or to duplicate an existing database within the same module. This function can be useful in
module Setup applications if they need to copy any databases from the module to built-in memory as part of the
setup process.

Springboard Development Guide for Handspring Handheld Computers

- 24 -

The HsAppEventHandlerSet() and HsAppEventPost() calls can be used to provide more flexible event-handling
mechanisms for an application. Normally, when applications have their own custom event types, they must
specifically look for these events in their main event loop after calling EvtGetEvent(). This process is not a
problem in the main event loop of the application, but it can be a problem if a system event loop (such as the
system “Find” dialog or “Category Edit” dialog event loops) is executing at the time the event is posted. Because
the system event loop is not aware of any application-specific event types, it simply ignores them.

If the application registers its own custom event handler procedure using HsAppEventHandlerSet(), then this
procedure is called automatically by the system during SysHandleEvent() in response to any event posted by
HsAppEventPost(). This way, the application's event handler is called even if the event is posted, while the system
is in one of its own custom dialog event loops.

Keep in mind that your application's event handler might be called from the context of another application's
action code processing. Even though your application is the “current” application visible to the user at the time,
the global CPU registers are not your application's globals due to the action code processing. Thus your
application event handler routine must never rely on global variables. Instead, it should use the evtRefCon
parameter that is passed to it as a pointer to any variables it needs to access or update. This evtRefCon
parameter value is set up by the HsAppEventHandlerSet() call.

4.3. Generic Module Support in Palm OS
Besides the calls mentioned in this chapter, the standard Palm OS memory and data manager calls for dealing
with modules and memory on modules are always available. For example, MemNumCards() returns the number of
modules that are present. It returns “2” if there is a removable module inserted and “1” otherwise. The built-in
memory of the handheld base unit is accessed by passing a module number of “0” to the appropriate memory and
data manager calls, whereas the removable module memory is accessed using a module number of “1.” Calls such
as MemCardInfo() can be used to get the module name, manufacturer name, etc., for any module by passing
the appropriate module number.

Remember that even if MemNumCards() returns a “2”, (indicating that the removable module is currently
installed), the user may pull the module out at any time—even immediately after this call returns. When a module
is removed, the system automatically aborts any application code that is currently in the process of accessing
memory on the removable module and returns control to the application launcher. In general, application code
can simply call MemNumCards() during its start-up and assume that the information will remain current until the
application exits. If the module is pulled out while the application is using it, the system automatically and
immediately aborts the application. If the application is not referencing the module when the module is pulled out,
then the system sends it an exit event and waits for the application to exit normally. When a module is inserted,
the current application is sent a normal exit event as well. It may or may not be re-launched after it exits,
depending upon the contents of the module (for example, it might have a Welcome application on it that is
launched instead).

4.4. Copy Protecting Module Applications
If desired, module applications can easily be designed so that they will not run if copied off the module to another
device's internal RAM. A simple mechanism is for the application to check for the presence of the removable
module and compare the module's name when it starts up. If the module is not present or the module's name is
not correct, it can display an appropriate error message and refuse to run.

All removable modules must have unique module and manufacturer names that must be registered with
Handspring. These names are null-terminated ASCII strings of up to 31 characters. To get the name of a module,
use the MemCardInfo() call and pass in the module number of the removable module.

Springboard Development Guide for Handspring Handheld Computers

- 25 -

For example:

char cardName[32];
Err err;

if MemNumCards() > 1
 {
 err = MemCardInfo (1 /*cardNo*/, cardName, 0 /*manufName*/,
 0 /*versionP*/, 0 /*crDateP*/, 0 /*romSizeP*/,
 0 /*ramSizeP*/, 0 /*freeBytesP*/);
 if (err || StrCompare (cardName, "MyCardName"))
 {
 DisplayCopyProtectError();
 }
 }

4.5. API Calls
This section lists the Handspring API calls in alphabetical order.

Table 4-1. API Call Summary

Call Description Page No.

HsAppEventHandlerSet Register event handler procedure Page 26

HsAppEventPost Enable event posting by application event
handler

Page 27

HsCardAttrGet Retrieve attribute Page 28

HsCardAttrSet Set attribute Page 31

HsCardErrTry/HsCardErrCatch Enable safe recovery for module removals Page 32

HsCardEventPost Queue an event Page 34

HsCardPatchInstall Enable patch installs Page 35

HsCardPatchPrevProc Get address of previous system trap
implementation

Page 36

HsCardPatchRemove Remove Setup application patch Page 37

HsDatabaseCopy Copy Palm OS database Page 38

HsEvtResetAutoOffTimer Reset auto-off timer Page 40

HSPrefGet Get Handspring preferences Page 41

HSPrefSet Set Handspring preferences Page 43

Springboard Development Guide for Handspring Handheld Computers

- 26 -

4.5.1. HsAppEventHandlerSet
Summary

Provided for applications so they can register their own event handler procedure that can be triggered using
HsAppEventPost().

Prototype

 Err
 HsAppEventHandlerSet (HsAppEventHandlerPtr procP, DWord evtRefCon)

Description

Sets up an application's event handler procedure. The system calls this handler procedure from the main event
loop in response to an event posted by the HsAppEventPost() routine.

The event handler has this prototype:

Boolean AppEvtHandler (DWord evtRefCon, Word evtNum, Word evtParam)

It returns “true” if the event was successfully handled and “false” if not. The evtRefCon parameter is a copy of
the evtRefCon value passed to HsAppEventHandlerSet(). The evtNum and evtParam parameters are copies
of values passed in to HsAppEventPost().

Note that this event handler can be called while the system is in the middle of sending an action code, such as
find, to another application. Even though your application is the “current” application visible to the user at the
time, the global CPU registers may not be your application's globals due to the action code processing. Thus the
AppEvtHandler routine must never use global variables. Instead it should use the evtRefCon parameter as a
pointer to a structure containing any variables it needs to reference or update.

The system automatically removes your AppEvtHandler() for you when your application quits.

Parameters

procP IN Pointer to event handler procedure, or NIL to
remove the current one.

evtRefCon IN This 32-bit reference constant gets passed to
the event handler when it is called by the
system.

Returns

0 If no error

Springboard Development Guide for Handspring Handheld Computers

- 27 -

4.5.2. HsAppEventPost
Summary

Provided for applications so that they can post an event to be processed by their own application event handler
procedure installed using the HsAppEventHandlerSet() call.

Prototype

Err
HsAppEventPost (Word evtNum, Word evtParam)

Description

Queues an event for the application's own event handler procedure. The system calls the event handler procedure
from the main event loop. The event handler can be installed using the HsAppEventHandlerSet() call.

The event handler has this prototype:

 Boolean AppEvtHandler (DWord evtRefCon, Word evtNum, Word evtParam)

It returns “true” if the event was successfully handled and “false” if not. The evtRefCon parameter is a copy of
the evtRefCon value passed to HsAppEventHandlerSet().

Parameters

evtNum IN The event number to post. Can be any value
between 0 and hsMaxAppEvent.

evtParam IN A 16-bit parameter that is passed to
CardEvtHandler.

Returns

0 If no error

Springboard Development Guide for Handspring Handheld Computers

- 28 -

4.5.3. HsCardAttrGet
Summary

Retrieves any one of the attributes of a module or its software/hardware interface.

Prototype

Err
HsCardAttrGet (Word cardNo, HsCardAttrEnum attr, void* valueP)

Description

Returns the current value of a particular module attribute designated by the attr parameter. The return value is
placed in the buffer pointed to by valueP.

Parameters

attr IN Which attribute to retrieve

cardNo IN Which module number to query about

*valueP OUT Value of attribute is returned in this buffer

The possible values of attr and the corresponding return types are shown below. The R/W column indicates if
settings are read-only (R) or read-write (RW). The read-write attributes can be configured through the
HsCardAttrSet() call.

Setting Value R/W Description

hsCardAttrRemovable Byte R True if this module is a removable module.
False if the module is not removable (built-in
module: cardNo = 0). Returns hsErrInvalidCard
if slot “cardNo” does not exist.

hsCardAttrHwInstalled Byte R True if a module is physically installed at
“cardNo” and has finished its power-on reset
cycle. False if not. Returns hsErrInvalidCard if
slot “cardNo” does not exist.

Note that this attribute is true before
hsCardAttrSwInstalled is true.

hsCardAttrSwInstalled Byte R True if the Palm OS memory, data, and other
managers have been updated to access the
given module. False otherwise.

Note that this attribute is not true until some
period of time after the module is physically
installed and hsCardAttrHwInstalled is true.

hsCardAttrCsBase DWord R Base address of first slot chip select. The
second chip select always starts at
hsCardAttrCsBase + hsCardAttrCsSize.

hsCardAttrCsSize DWord RW Address range of each of the chip selects.

Springboard Development Guide for Handspring Handheld Computers

- 29 -

Setting Value R/W Description

hsCardAttrAccessTime DWord RW Minimum access time of slot chip selects in
nanoseconds. Note that when set, the value
passed in is rounded up to the next access time
setting available in hardware.

hsCardAttrReset Byte RW If value is non-zero, the module reset signal
going to the module is asserted. If zero, the
module reset signal is deasserted.

hsCardAttrIntEnable Byte RW If value is non-zero, module interrupts are
enabled. If value is zero, the module interrupts
are disabled.

hsCardAttrCardParam DWord RW Contains the 32-bit parameter that is passed to
the module's interrupt handler, power handler,
and event handler.

hsCardAttrIntHandler void* RW This attribute is a pointer to the module
interrupt handler which must have this calling
convention:

void CardIntHandler (DWord cardParam,
Boolean* sysAwakeP);

The cardParam that is passed to this interrupt
handler can be set up through the
hsCardAttrCardParam attribute.

hsCardAttrPwrHandler void* RW This attribute is a pointer to the module's
power handler routine, which must have this
calling convention:

void CardPwrHandler (DWord cardParam,
Boolean sleep, HsCardPwrDownEnum reason)

The cardParam is a convenience copy of the
hsCardAttrCardParam module attribute.

hsCardAttrEvtHandler void* RW This attribute is a pointer to a Module Event
Handler procedure. A module interrupt handler
can trigger the system to call this event handler
using HsCardEventPost(). This mechanism is
described in Interrupt Handler Interaction

hsCardAttrLogicalBase void* R Contains the logical base address reserved for
the given module slot. This value, added to the
module's header offset, gives the address of
the module's ROM header. Most applications
do not need to use this value. It is provided
mainly for advanced applications that need to
format their own module headers (e.g. flash
programming applications).

Springboard Development Guide for Handspring Handheld Computers

- 30 -

Setting Value R/W Description

hsCardAttrLogicalSize DWord R Contains the logical address space reserved
for the given module. This value is greater than
or equal to the actual addressable memory on
the module.

hsCardAttrHdrOffset DWord R Contains the offset from the module base
address to the module's ROM header. Most
applications do not need to use this value. It is
provided mainly for advanced applications
that need to format their own module headers
(e.g. flash programming applications).

Returns

0 If no error

hsErrNotSupported This setting is not supported

hsErrInvalidCard Invalid module number

Springboard Development Guide for Handspring Handheld Computers

- 31 -

4.5.4. HsCardAttrSet
Summary

Sets an attribute of a module's interface.

Prototype

 Err
 HsCardAttrSet (Word cardNo, HsCardAttrEnum attr, void* valueP)

Description

Sets the new value of a particular module attribute designated by the attr parameter.

Parameters

attr IN Which attribute to set

cardNo IN Which module number to set attribute on

*valueP IN New value of attribute is passed in this buffer

The possible values of setting and the corresponding data type of *valueP are documented in the
HsCardAttrGet() call. Only those indicated as being read/write (RW) attributes can be changed through this call.

Returns

0 If no error

hsErrNotSupported This setting is not supported

hsErrInvalidCard Invalid module number

hsErrReadOnly This attribute is read-only and cannot be changed.

Springboard Development Guide for Handspring Handheld Computers

- 32 -

4.5.5. HsCardErrTry/HsCardErrCatch
Summary

These macros are provided for interrupt handlers, system extensions, and shared libraries that need to access
memory or devices on a removable module. These calls enable safe recovery if the module is removed while in
critical sections of code.

Prototype

 HsCardErrTry
 {
 // Do something that accesses the removable module
 }

 HsCardErrCatch
 {
 // Recover or cleanup after a failure in the above Try block.
 // The code in this Catch block does not execute if
 // the above Try block completes without a module removal
 } HsCardErrEnd

 // You must structure your code exactly as above. You cannot have a
 // HsCardErrTry { } without a HsCardErrCatch { } HsCardErrEnd,
 // or vice versa.

Description

The HsCardErrTry/HsCardErrCatch macros should be wrapped around any section of code within an interrupt
handler, system extension, shared library, or other system code that needs to access memory or hardware on a
removable module. If the module is removed while the critical section of code is executing, control is passed to
the HsCardErrCatch() section.

These macros can be nested. For example, you can call a subroutine from within your HsCardErrTry block that
has its own try/catch block. Every routine that has an HsCardErrTry clause, however, must have an
HsCardErrCatch.

Note that these macros require some amount of time to execute that should be considered when using them
within an interrupt service routine. Using these macros will essentially extend the interrupt latency time.

Limitations

HsCardErrTry and HsCardErrCatch are based on setjmp/longjmp. At the beginning of a Try block, setjmp saves
the machine registers. A module removal triggers longjmp, which restores the registers and jumps to the
beginning of the Catch block. Therefore, any changes in the Try block to variables stored in registers are not
retained when entering the Catch block.

The solution is to declare variables that you want to use in both the Try and Catch blocks as “volatile.”

Springboard Development Guide for Handspring Handheld Computers

- 33 -

For example:

 volatile long x = 1; // Declare volatile local variable
 HsErrErrTry
 {
 ...
 x = 100; // Set local variable in Try
 ...
 }

 HsCardErrCatch
 {
 if (x > 1) // Use local variable in Catch
 SysBeep(1);
 } HsCardErrEnd

Parameters

none

Returns

N/A

Springboard Development Guide for Handspring Handheld Computers

- 34 -

4.5.6. HsCardEventPost
Summary

Provided for interrupt handlers so that they can queue an event for processing later by a CardEvtHandler()
procedure.

Prototype

 Err
 HsCardEventPost (Word cardNo, Word evtNum, Word evtParam)

Description

Queues an event for a CardEvtHandler() procedure. The system calls the CardEvtHandler procedure from the
main event loop of the current application after the interrupt handler returns. The CardEvtHandler can be
installed using the hsCardAttrEvtHandler attribute of HsCardAttrSet().

The CardEvtHandler has this prototype:

Boolean CardEvtHandler (DWord cardParam, Word evtNum, Word evtParam)

It returns “true” if it successfully handled the event and “false” if it did not. The cardParam value passed to
CardEvtHandler is a convenience copy of the hsCardAttrCardParam module attribute.

Parameters

evtNum IN The event number to post. Can be any value between
0 and hsMaxCardEvent.

cardNo IN Module number for which to post event.

evtParam IN A 16-bit parameter that is passed to CardEvtHandler.

Returns

0 If no error

hsErrInvalidCard Invalid module number

Springboard Development Guide for Handspring Handheld Computers

- 35 -

4.5.7. HsCardPatchInstall
Summary

Enables Module Setup utilities to install patches to Palm OS system calls.

Prototype

 Err
 HsCardPatchInstall (Word trapNum, void* procP)

Description

Patches a Palm OS system trap call. Setup utilities should always use this call to patch traps rather than the Palm
OS SysSetTrapAddress() call because this call ensures compatibility with other third-party extensions that may
have been installed by the user (through HackMaster or equivalent).

The implementation of the patch must use the HsCardPatchPrevProc() routine to obtain the address of the “old”
trap call in order to pass control over to it.

When the module Setup application is called to remove the module software, it must use HsCardPatchRemove()
to remove every patch installed by HsCardPatchInstall().

Important: Module Setup applications are only allowed to install one patch per system trap number. If
HsCardPatchInstall() is called twice for the same trap without an intervening HsCardPatchRemove(), it returns
the error code hsErrCardPatchAlreadyInstalled.

Here is an example of a patch implementation that does some work then passes control over to the previous
implementation:

 static Boolean
 PrvCardSysHandleEvent (EventPtr eventP)
 {
 Boolean handled;
 Boolean (*oldProcP) (EventPtr eventP) = 0;

 // Do some stuff
 //...

 // Call old routine
 HsCardPatchPrevProc (sysTrapSysHandleEvent,
 (DWord*)&oldProcP);
 handled = (*oldProcP) (eventP);

 return handled;
 }

Parameters

trapNum IN The trap number of the call to patch. This value is a
SysTrapNumber Palm OS enum value as found in the
Palm OS header file <SysTraps.h>.

procP IN Pointer to procedure to plug into the system trap.

Returns

0 If no error

hsErrInvalidCard Invalid module number

Springboard Development Guide for Handspring Handheld Computers

- 36 -

4.5.8. HsCardPatchPrevProc
Summary

Used by system patches installed using HsCardPatchInstall() to get the address of the previous implementation of
the system trap.

Prototype

 Err
 HsCardPatchPrevProc (Word trapNum, void** prevProcPP)

Description

Use this call inside the implementation of a system patch for a module in order to get the address of the previous
implementation of the call. In most cases, patches do their own work before calling the previous implementation.
See HsCardPatchInstall() for an example of a patch implementation.

Parameters

trapNum IN The trap number of the call that was patched. This
value is a SysTrapNumber Palm OS enum value, as
found in the Palm OS header file <SysTraps.h>

*prevProcPP OUT The address of the previous implementation is
returned in this pointer.

Returns

0 If no error

ftrErrNoSuchFeature Trap was not patched by HsCardPatchInstall

Springboard Development Guide for Handspring Handheld Computers

- 37 -

4.5.9. HsCardPatchRemove
Summary

Removes a module Setup application patch installed by HsCardPatchInstall().

Prototype
 Err
 HsCardPatchInstall (Word trapNum, void* procP)

Description

When the module Setup application gets called to remove the module software, it must use this call to remove
every patch installed by HsCardPatchInstall().

Parameters

trapNum IN The trap number of the call that was patched. This
value is a SysTrapNumber Palm OS enum value as
found in the Palm OS header file <SysTraps.h>

Returns

0 If no error

hsErrCardPatchNotInstalled Trap was not patched by HsCardPatchInstall

Springboard Development Guide for Handspring Handheld Computers

- 38 -

4.5.10. HsDatabaseCopy
Summary

Copies an entire Palm OS database.

Prototype

 Err
 HsDatabaseCopy (Word srcCardNo, LocalID srcDbID, Word dstCardNo,
 char* dstNameP, DWord hsDbCopyFlags, char* tmpNameP,
 LocalID* dstDbIDP)

Description

Copies an entire Palm OS database. The source and destination can be the same module or different modules,
and the source database can be copied from ROM or RAM.

The hsDbCopyFlags parameter can be used to control the copy operation. The caller has the option of
preserving the creation date, modification date, backup date, and/or modification number of the source database,
as well as whether or not an existing database with the same name should be automatically overwritten or not.

Note that this function does not inherently support writing to Flash memory. The developer should check
whether the destination is read-only memory.

Parameters

srcCardNo IN Module number of source database.

srcDbID IN Database ID of source database.

dstCardNo IN Module number of destination database.

dstNameP IN Name of new database. If a nil pointer is passed,
then the name of the source database is used.

hsDbCopyFlags IN One or more of hsDbCopyFlagXXX flags as
described below in Table II.2.

tmpNameP IN Temporary name to use while copying, or nil pointer
to use default temporary name.

*dstDbIDP OUT The database ID of the created destination database
is returned here unless dstDbIDP is a nil pointer.

Springboard Development Guide for Handspring Handheld Computers

- 39 -

Table 4-2 lists the possible flags for the hsDbCopyFlags parameter.

Table 4-2. hsDbCopyFlags Flags

Flag Description

hsDbCopyFlagPreserveCrDate Preserve the creation date of the source database. If not set,
then the destination database gets the current date and time
as its creation date.

hsDbCopyFlagPreserveModDate Preserve the modification date of the source database. If not
set, then the destination database gets the current date and
time as its modification date.

hsDbCopyFlagPreserveModNum Preserve the modification number of the source database. If
not set, then the destination database gets a new
modification number unrelated to the source database.

hsDbCopyFlagPreserveBckUpDate Preserve the backup date of the source database. If not set,
then the destination database gets a backup date of 0.

hsDbCopyFlagOKToOverwrite OK to overwrite an existing database with the same name.
Preserve the creation date of the source database. Any pre-
existing destination database with the same name is left
intact until the source has been copied over as a temporary
database. This guarantees that any pre-existing database is
not lost if the copy operation fails.

hsDbCopyFlagDeleteFirst Delete existing destination database first, if it exists.
Normally any pre-existing destination database with the
same name is left intact until the source has been copied over
as a temporary database. This guarantees that any pre-
existing database is not lost if the copy operation fails. If
space is limited on the destination module, however, there
may not be room for two temporary copies of the destination
database, so this flag can be set to override the default
behavior.

Returns

0 If no error

non-zero If a data, memory, or other type of error occurs during
the copy operation

Springboard Development Guide for Handspring Handheld Computers

- 40 -

4.5.11. HsEvtResetAutoOffTimer
Summary

Provided for interrupt handlers so that they can reset the auto-off timer of the system and turn on the LCD, if it
is not already on.

Prototype

 Err
 HsEvtResetAutoOffTimer (SDWord stayAwakeTicks, Boolean userOn)

Description

By default, if a module interrupt wakes the device and the handler returns without calling
HsEvtResetAutoOffTimer(), the system puts the device back to sleep on the next round through the event loop
(see Power Management Options for Interrupt Handlers for a complete description).

However, by calling HsEvtResetAutoOffTimer(), the interrupt handler can tell the system to turn on the LCD if
it is not already turned on and tell the system to stay awake for at least a certain number of system ticks. If this call
is made when the LCD is already on, it has no effect other than to possibly extend the auto-off timer.

The stayAwakeTicks parameter is specified in system ticks, but the current granularity of the system in this
respect is only approximately five seconds. Consequently, if you pass the value like sysTicksPerSecond*1,
the system might not shut off for five seconds. Passing (-1) for stayAwakeTicks makes the system stay awake
for at least the current auto-off time as specified in the General Preferences panel. If stayAwakeTicks is zero,
the system will go back to sleep during the next immediate event loop.

Parameters

stayAwakeTicks IN Passing –1 instructs the system to stay awake for
the current Auto-off time as specified in the General
Preference panel.

Passing 0 instructs the system to go to sleep in next
loop.

Passing any other value will set the minimum
amount of time in system ticks to stay awake

userOn IN If true, turn on the LCD if it is not already on.

Returns

0 If no error

Springboard Development Guide for Handspring Handheld Computers

- 41 -

4.5.12. HsPrefGet
Summary

This routine is used to retrieve the value of various Handspring preferences.

Prototype

Err
HsPrefGet (Word pref, void* bufP, DWord* prefSizeP);

Description

Currently, the only preferences that can be retrieved by this routine are those that specify which serial library to
use for certain applications, such as HotSync or Debugger Console. By default, most serial applications use the
built-in serial port on the cradle, but through these Handspring preferences, these applications can be re-directed
to use a different serial library (e.g., one on a Springboard module).

The various applications that can be re-directed to a different serial library include:

• Local HotSync

• Modem HotSync

• Debugger Console

• IrDA

• All Others (i.e., any and all other applications that would normally use the built-in serial port)

When called to retrieve one of the serial library preferences, this call returns the name of the actual serial library
to be used. If the particular application class has not been re-directed to a different library, then the name of the
built-in library is returned (“BuiltIn SerLib”).

The pref parameter is an enumerated constant (of type HsPrefEnum) that specifies the preference to retrieve. The
bufP parameter is a pointer to a buffer to hold the preference value and *prefSizeP must be initialized to the size of
the bufP buffer. When called to retrieve the name of a serial library preference, bufP should be at least 32 bytes
long. On exit, *prefSizeP will contain the actual length of the name (including null byte).

Parameters

pref IN Enumerated constant of type HsPrefEnum that specifies
which preference to retrieve

bufP IN Pointer to buffer to hold preference value. When retrieving
one of the hsPrefSerialLib type preferences, this buffer
should be at least 32 bytes long.

prefSizeP INOUT On entry, size of the bufP buffer. On exit, actual size of the
retrieved preference.

Springboard Development Guide for Handspring Handheld Computers

- 42 -

The possible values of pref are:

Setting Description

hsPrefSerialLibHotSyncLocal Returns the name of the serial library to use for local
HotSync

hsPrefSerialLibHotSyncModem Returns the name of the serial library to use for modem
HotSync

hsPrefSerialLibConsole Returns the name of the serial library to use for the
debugger console

hsPrefSerialLibIrda* Returns the name of the serial library to use for IRDA.

hsPrefSerialLibDef Return the name of the serial library to use for all other
applications (i.e. any application that opens up the built-
in serial port library named “Serial Library”).

* This feature is not supported on Visor or Visor Deluxe.

Returns

0 If no error

hsErrInvalidParam Invalid pref parameter

hsErrBufferTooSmall *prefSizeP is too small to return the designated
preference. On exit, *prefSizeP will be updated to the
required size.

Springboard Development Guide for Handspring Handheld Computers

- 43 -

4.5.13. HsPrefSet
Summary

This routine is used to set the values of various Handspring preferences.

Prototype

Err
HsPrefSet (Word pref, void* bufP, DWord* prefSizeP);

Description

Currently, the only preferences that can be set by this routine are those that specify which serial library to use for
certain applications, such as HotSync or Debugger Console. By default, most serial applications use the built-in
serial port on the cradle, but through these Handspring preferences, these applications can be re-directed to use a
different serial library (e.g., one on a Springboard module).

The various applications that can be re-directed to a different serial library include:

• Local HotSync

• Modem HotSync

• Debugger Console

• IrDA

• All Others (i.e., any and all other applications that would normally use the built-in serial port)

When called to set one of the serial library preferences, this call sets the name of the actual serial library to be
used. To change a serial library preference back to the built-in port, pass in a pointer to an empty string (i.e., bufP
= “”).

The pref parameter is an enumerated constant (of type HsPrefEnum) that specifies the preference to retrieve. The
bufP parameter is a pointer to the new value and *prefSizeP is the size of the new value (including null terminator).

Parameters

pref IN Enumerated constant of type HsPrefEnum that
specifies which preference to retrieve.

bufP IN Pointer to new value. When setting one of the
hsPrefSerialLib type preferences, this buffer should
point to a null terminated library name string. When
setting a serial library back to it’s default, pass in a
pointer to an empty string.

prefSizeP IN Size of the new value, including null terminator.

The possible values of pref are:

Setting Description

hsPrefSerialLibHotSyncLocal Sets the name of the serial library to use for
local HotSync.

hsPrefSerialLibHotSyncModem Sets the name of the serial library to use for
d H S

Springboard Development Guide for Handspring Handheld Computers

- 44 -

modem HotSync.

hsPrefSerialLibConsole Sets the name of the serial library to use for
the debugger console.

hsPrefSerialLibIrda* Sets the name of the serial library to use for
IRDA.

hsPrefSerialLibDef Sets the name of the serial library to use for
all other applications (i.e., any application
that opens up the built-in serial port library
named “Serial Library”).

* This feature is not supported on Visor or Visor Deluxe.

Returns

0 If no error

hsErrInvalidParam Invalid pref parameter

Springboard Development Guide for Handspring Handheld Computers

 - 45 -

5. Springboard Interface Pinout and Signal Description

The Springboard Expansion Slot allows for hardware and software expansion of Handspring’s family of Palm OS-
compatible handheld computers, and for seamless hot plug-and-play capability.

Figure 5-1. Block diagram of the slot interface

CPU

Bidirectional
Buffer

Buffer

Springboard
Slot

CS0
CS1

Data Lines

Data Lines

Address Lines

Control Signals

Address Lines

* The buffer is enabled by two card detect
signals indicating that a module is the
Springboard slot. Note that there is a
propagation delay associated with the buffer.
** The buffer is enabled when either chip
select is asserted. Note that there is a
propagation delay associated with both the
AND gate and the buffer.

Card Detect*

16

16

24

CD1

GND

CD2

RESET*

LOW BAT*

MIC-

MIC+

VCC

VDOCK

IRQ*

24

Control Signals

IRQ*

Buffer Enable**

The Springboard Expansion Slot provides a slave-only interface for expanding the capabilities of the main
handheld unit. This slot supports hot swapping via buffers and transceivers; otherwise, it functions as if directly
connected to the host CPU bus. The core of the Springboard Expansion Slot connector is physically identical to a
PCMCIA connector; however, the mechanical keying features and electrical specifications differ.

Modules can be inserted into or removed from the base unit at any time, even when the device is on. When a
module is inserted, the software and hardware automatically configure the module, making its features instantly
available. A module can be a simple ROM-only module with a set of additional applications, or it can provide
additional hardware functionality, such as network connectivity, sound support, and communications options. A

Springboard Development Guide for Handspring Handheld Computers

- 46 -

variety of functions, such as pagers, radios, or backup flash memory can be interfaced with Handspring’s handheld
computers in this way.

Figure 5-2 illustrates the Springboard 68-pin expansion slot.

Figure 5-2. Springboard 68-pin Expansion Slot

Pin 1

Pin 35

Pin 34

Pin 68

Springboard Development Guide for Handspring Handheld Computers

- 47 -

5.1. Pinout
Table 5-1 summarizes the signal names with their respective pin numbers on the 68-pin expansion slot connector.
Note that the signal direction (I/O/P/PU1) is viewed with reference to the module. For example, CS1* is driven
by the CPU and is an input (I) to the module.

Table 5-1. Springboard Expansion Slot Connector Pin Summary

Pin Name I/O/P/PU1 Function Pin Name I/O/P/PU Function

1 GND P Module Ground 35 GND P Module Ground

2 D3 I/O Data Bus 36 CD1* O/PU Card Detect

3 D4 I/O Data Bus 37 D11 I/O Data Bus

4 D5 I/O Data Bus 38 D12 I/O Data Bus

5 D6 I/O Data Bus 39 D13 I/O Data Bus

6 D7 I/O Data Bus 40 D14 I/O Data Bus

7 CS0*2 I Chip Select 41 D15 I/O Data Bus

8 A10 I Address Bus 42 CS1* I Chip Select

9 OE* I Output Enable 43 Reserved Reserved

10 A11 I Address Bus 44 Reserved Reserved

11 A9 I Address Bus 45 Reserved Reserved

12 A8 I Address Bus 46 A17 I Address Bus

13 A13 I Address Bus 47 A18 I Address Bus

14 A14 I Address Bus 48 A19 I Address Bus

15 WE* I Write Enable 49 A20 I Address Bus

16 IRQ* O/PU Interrupt Request 50 A21 I Address Bus

17 VCC P Module VCC 51 VCC P Module VCC

18 VDOCK P Docking Voltage 52 VDOCK P Docking Voltage

19 A16 I Address Bus 53 A22 I Address Bus

20 A15 I Address Bus 54 A23 I Address Bus

21 A12 I Address Bus 55 Reserved Reserved

22 A7 I Address Bus 56 Reserved Reserved

23 A6 I Address Bus 57 Reserved Reserved

24 A5 I Address Bus 58 RESET* I Module Reset

25 A4 I Address Bus 59 Reserved Reserved

26 A3 I Address Bus 60 MIC- I Microphone+/-

27 A2 I Address Bus 61 MIC+ I Microphone+/-

28 A1 I Address Bus 62 Reserved Reserved

29 A0 I Address Bus 63 LOWBAT* I Low Battery

30 D0 I/O Data Bus 64 D8 I/O Data Bus

31 D1 I/O Data Bus 65 D9 I/O Data Bus

32 D2 I/O Data Bus 66 D10 I/O Data Bus

33 Reserved Reserved 67 CD2* O/PU Card Detect

34 GND P Module Ground 68 GND P Module Ground

1. I = input, O = output, and P = power, with respect to the module. For example, the IRQ signal is driven by the module and is an
output to the handheld. PU indicates the signal is internally pulled up within the handheld.

2. * indicates an active low signal.

Springboard Development Guide for Handspring Handheld Computers

- 48 -

5.2. Signal Descriptions
The signals for the 68-pin expansion connector are described below in alphabetical order. Active-low signals have
an asterisk “*” at the end of their names.

Address Bus A[23:0]

Each of the two chip selects (CS0 and CS1) has direct access of up to 16MB. A total range of 32MB is addressable
on Springboard. Address line A23 is the most significant address bit, and A0 is the least significant address bit.
The default size of each region is 16MB and is software programmable. This bus is an input to the expansion slot;
it is always driven during normal and sleep mode. The address bus is valid throughout the entire bus cycle.

Note: The Springboard Expansion Slot data bus is 16-bit only and memory accesses are conducted on even-byte
boundaries.

Card Detect CD1*, CD2*

CD1* and CD2* are active-low module detect signals that indicate to the handheld when the expansion module
has been firmly seated into the Springboard Expansion Slot. The two Module Detect pins are physically shorter
than all other pins on the expansion connector. On the host side, the signals perform two functions: 1) they
interrupt the handheld to alert the CPU that a module has been inserted or removed, and, 2) they begin turning
on the Vcc power supply. Depending on the electrical load on the module, VCC is valid within 5 ms. Both signals
should be tied directly to GND on the expansion module.

Chip Select CS0*, CS1*

These two active-low chip select signals control access to the two addressable regions on the module. The address
space for CS0* is referred to as csSlot0; the address space for CS1* is referred to as csSlot1. In order for the Palm
OS to recognize the module and its contents, use CS0* to access ROM or Flash. CS1* is optional and can be used
to interface with additional ROM, Flash, UARTs, or other peripheral devices. Both chip select signals are asserted
for the duration of the memory cycle. Only one of the two chip selects is valid for each module access. The
address bus is guaranteed to be valid before and during the assertion of the chip select signal. Refer to Section 2.1,
“Memory Space,” for more information on the chip selects and their corresponding address spaces.

Data Bus D[15:0]

The data bus consists of 16 data lines, D[15:0]. D15 is the most significant data bit, and D0 is the least significant
data bit. Only 16-bit operations are performed on the data bus.

Module Ground GND

GND is the ground connection to the module. All GND signals must be connected to the module’s ground
reference or plane.

Interrupt Request IRQ*

The active low interrupt request is level-sensitive. This signal is output from the Springboard module whenever
interrupt service is required from the handheld computer. There is no default interrupt service routine for the
module, so the application resident on the expansion module must install the interrupt service routine (ISR)
during initialization (see Interrupts for more information on interrupt handling). Interrupt acknowledgment is
user-defined and must be accommodated by the expansion module application as well. The internal Visor
interface has a pull-up resistor, so the module does not require one.

Low Battery Warning LOWBAT*

The low battery warning signal indicates that the handheld’s batteries are below a critical threshold or are being
swapped out. When this signal is asserted, the expansion module is electrically “removed” to prevent data loss in
the handheld. When the batteries are replaced or recharged, the module is “re-inserted.”

Springboard Development Guide for Handspring Handheld Computers

- 49 -

Microphone +/- MIC+,MIC-

These two signals interface to the microphone on the handheld unit. These signals are a differential pair and are
directly connected to an electret condenser microphone. Appropriate bias must be supplied by the module on the
MIC+ signal. Please refer to the appropriate Product Guide for details on the microphone.

Output Enable OE*

OE* is the active-low output enable, or read signal, for the module. When qualified with a low on either CS0* or
CS1*, a low on OE* indicates a read cycle from the module. The address bus is valid before the assertion of OE*.
The module can drive the data bus as soon as a chip select and OE* are asserted. Data must be driven for the
entire cycle, as determined by the levels on the chip select and OE*. WE* is deasserted during read cycles.

Note: The chip selects are not guaranteed to be asserted prior to the assertion of OE*. Also the cycle is ended
when either a chip select or OE* is deasserted.

Module Reset RESET*

RESET* is an active low reset signal for the expansion module. During module insertion, RESET* is asserted
while VCC is rising; it is held asserted for 30 ms minimum after the module is inserted to allow circuitry on the
module sufficient time to stabilize. Because module power is guaranteed to be applied within 5 ms, the module
will have a minimum valid reset signal of 25 ms. Application software can also assert this signal at any time to reset
the module.

RESET does not assert LOWBAT* or remove power to VCC.

Module VCC VCC

VCC is the 3.0-3.6V power supply, which can be used to power the expansion module (some expansion modules
can supply their own power). Power is not provided on these pins until the module is firmly seated in the slot and
both module detects (CD1* and CD2*) are asserted. The power supply ramps up to VCC within 5 ms of
insertion. The maximum current that can be supplied by the slot is 100 mA. Expansion module designs that use
this power source must take into account what the users will see when LOWBAT* is asserted and the
Springboard Expansion Slot power is removed.

Docking Voltage VDOCK

This pin could provide a charging supply to the module when the handheld is placed into a special charging dock.
The handheld passes this charging supply from a pin on its cradle connector through to pins (VDOCK) on the
Springboard expansion module connector. VDOCK provides a 4.75 – 6.2v on two pins with a maximum current
of 500mA. Developers should ensure that VDOCK is not connected with Vcc.

Write Enable WE*

WE* is the active-low write enable signal for the module. When qualified with a low on either CS0* or CS1*, a
low on WE* indicates a write cycle to the module. The address bus is valid before the assertion of WE*. The data
bus, driven by the host interface, is valid before the assertion of WE*. In addition, WE* is deasserted prior to the
deassertion of the chip select. OE* is deasserted during write cycles.

Note: Because there is no separate write enable for each byte, all 16 bits of the data bus are written at the same
time; thus, there is no support for byte writes to the expansion module.

Reserved

Saved for future use. These pins should remain unconnected.

Springboard Development Guide for Handspring Handheld Computers

 - 50 -

6. Electrical Specifications

This chapter provides electrical and timing characteristics for the Springboard platform. Detailed electrical,
mechanical, and environmental specifications for each product are detailed in the applicable Product Guide.

6.1. DC electrical characteristics
Table 6-1 below lists the DC electrical characteristics for Springboard modules.

Table 6-1. DC electrical characteristics

Symbol Parameter Min Max Unit

Vcc Supply Voltage1 3.0 3.6 V

Icc Operating Current – 100 mA

Is1 Standby Current, LOWBAT* deasserted – 100 µA

Is2 Standby Current, LOWBAT* asserted2 – 10 µA

VIH Input High Voltage 2.0 Vcc + 0.5 V

VIL Input Low Voltage 0.0 0.8 V

VOH Output High Voltage (IOH = 2.0 mA) 2.4 Vcc + 0.5 V

VOL Output Low Voltage (IOL = -2.5 mA) 0.0 0.4 V

IIL Input Leakage Current (0V <= VIN <= Vcc) – ±5 µA

IOZ 3-state Leakage Current (0V <= VOUT <= Vcc) – ±5 µA

VDOCK Docking Voltage (500mA max) – 4.75 to
6.2v

V

1. In Visor, Handspring’s first generation of handheld computer, the minimum supply voltage could actually be zero if LOWBAT*
is asserted.

2. Since the Visor handheld (see Note 1) actually removes power from the Springboard Expansion Slot, this specification is for
future product compatibility.

Springboard Development Guide for Handspring Handheld Computers

- 51 -

6.2. AC Characteristics
This section lists the AC timing parameters for Springboard modules.

6.2.1. General Information on Springboard Timing
Many signals on the Springboard port are CPU signals powered through buffers. To illustrate this point, the
following diagram depicts the Springboard implementation on the Handspring Visor.

Figure 6-1. Springboard Implementation on Visor

CPU

Bidirectional
Buffer

Buffer

Springboard
Slot

CS0
CS1

Data Lines

Data Lines

Address Lines

Control Signals

Address Lines

* The buffer is enabled by two card detect
signals indicating that a module is the
Springboard slot. Note that there is a
propagation delay associated with the buffer.
** The buffer is enabled when either chip
select is asserted. Note that there is a
propagation delay associated with both the
AND gate and the buffer.

Card Detect*

16

16

24

CD1

GND

CD2

RESET*

LOW BAT*

MIC-

MIC+

VCC

VDOCK

IRQ*

24

Control Signals

IRQ*

Buffer Enable**

Springboard Development Guide for Handspring Handheld Computers

- 52 -

6.2.2. Read Cycle
Table 6-2. Read Cycle Details

Num Parameter Min Max Unit

1 WE* negated before cycle begins and CSx*
is asserted

0 - ns

2 CSx* asserted after address valid 5 - ns

3 OE* asserted after CSx* asserted - 15 ns

4 CPU expecting data after CSx* asserted 20 + T1 300 ns

5 Data hold required after CSx* or OE*
negated

0 - ns

6 OE* negated after CSx* negated -10 ns

7 Access Time defined in ROM header file2 - - ns

1. T is the delay caused by inserting wait states. The operating system uses the Access Time (7) to setup the appropriate number of
wait states.

2. Minimum and maximum Access Times are specific to each Handspring product and may vary with CPU model and clock speed.

Address Valid

Data Valid

Address

CSx*

Data
(4)

W E*

OE*

(5)

(2)

(6)

(7)

(5)

(1)

(3)

Springboard Development Guide for Handspring Handheld Computers

- 53 -

6.2.3. Write Cycle
Table 6-3. Write Cycle Details

Num Parameter Min Max Unit

1 OE* negated before cycle begins and CSx* is
asserted

0 - ns

2 CSx* asserted after address valid 5 - ns

3 WE* asserted after CSx* asserted - 70 ns

4 CPU data valid after CSx* asserted - 40 ns

5 CSx* pulse width 25+T1 300 ns

6 CSx* negate after WE* negate 0 - ns

7 Data hold after WE* negated 7.5 - ns

8 Access Time defined in ROM header file2 - - ns

1. T is the delay caused by inserting wait states. The operating system uses the Access Time (7) to setup the appropriate number of
wait states.

2. Minimum and maximum Access Times are specific to each Handspring product and may vary with CPU model and clock speed.

Address Valid

Data Valid

Address

CSx*

Data
(4)

OE*
(1)

(3)
W E*

(5)

(2)

(8)

(7)

(6)

Springboard Development Guide for Handspring Handheld Computers

- 54 -

6.2.4. Reset Timing
When a module is first inserted, an interrupt is generated to the handheld and power is slowly applied to the
module. In the Handspring handheld computer, the OS ensures that the reset signal (RESET*) remains asserted
for at least 30 ms before releasing it. Because the Springboard module power ramps up in approximately 5 ms,
there is a guaranteed 25 ms of power-on reset time for the module.

If required, the module software can manually assert and release RESET* after the module has been inserted by
setting the hsCardAttrReset attribute of HsCardAttrSet().

Card Detect*

VCC

Reset* 25ms

Springboard Development Guide for Handspring Handheld Computers

- 55 -

7. Mechanical Information

This section covers an overview of the mechanical aspects of the Springboard Expansion Slot. Mechanical
information specific to each product will be covered in the Product Guides. Complete mechanical information
referenced in these documents is available on Handspring’s website in a variety of formats. Design files for
Springboard modules, cradle assemblies, and the exterior dimensions of the Handspring™ handheld are included.
Full mechanical files for modules, Handspring handheld computers, and cradles are located on the mechanical
section of Handspring’s developer website:

http://www.handspring.com/developers/dev_mechanical.jhtml

There are several general areas of interest to examine when designing a Springboard module:

• Springboard Connector

• Geometry of the Springboard slot

• Mechanical Interaction with the Handspring handheld

• Springboard Module Base Color

We’ll cover each of these in more detail.

7.1. Springboard Connector
Familiarity with the Springboard connector will ensure a proper fit. The Handspring website contains CAD files
that fully document various implementations of Springboard modules.

The connector core is a PCMCIA style, 68-pin connector with different keying features. These unique keying
features are designed to prevent accidental insertion of an incompatible card. A close examination of the plastic
housing that surrounds a Springboard module connector core will show the keying features as illustrated below.

Figure 7-1. Springboard Connector Keying

Pin 1

Pin 35

Another area of interest associated with the Springboard connector relates to the various tail offsets available.
Developers should select the tail offset driven by their design. Typical design considerations that drive the tail
offset selection include:

• PCB thickness

• Top/bottom mount of connector onto PCB.

http://www.handspring.com/developers/dev_mechanical.jhtml

Springboard Development Guide for Handspring Handheld Computers

- 56 -

Figure 7-2. Connector Considerations

66-pin Connector

PCB

Tail Offset

Component Space

This surface is flush aginst the handheld.

This surface is "open faced" and is only constrained
by the type of enclosure you select or design.

PCB Thickness

66-pin Connector

Thin PCB

Tail Offset

Component Space

Component Space

This surface is flush aginst the handheld.

This surface is "open faced" and is only constrained
by the type of enclosure you select or design.

PCB Thickness

The following table lists the mechanical insertion/extraction force ratings for the Springboard Expansion Slot
connector.

Table 7-1. Insertion/extraction force for Springboard Expansion Slot connector

1. These ratings were verified up to 3000 insertions/extractions of the module

Rating Value Unit

Insertion force1 1.5 - 6 pounds

Extraction force 1.5 - 5 pounds

Springboard Development Guide for Handspring Handheld Computers

- 57 -

7.2. Geometry of the Springboard Slot
The slight draft required by tooling for plastics introduces small angles into the Springboard slot in each
Handspring handheld. The result is that the Springboard module reference plastics are not perfectly rectangular.
The CAD files located on the Handspring website provide a reference design for developers who want to create
completely custom plastic enclosures for their modules.

7.2.1. Mechanical Interaction with the Handspring Handheld
The final mechanical consideration involves how the module will interact with various Handspring handhelds, as
these plastics may change from product to product. The CAD files located on the Handspring website contain
detailed information on each handheld device and cradle. These CAD files include non-encroachment zones that
highlight areas of concern.

In particular, module plastics should consider interaction with:

• Cradle

• Stylus holder

• Belt clip (if applicable)

• Reset hole

• Battery Door

7.3. Springboard Module Base Color
Color information for Handspring products may change from product to product. Please refer to the Handspring
website for the latest information on plastic materials, textures, and colors. Details are updated within Application
Notes in this section:

http://www.handspring.com/developers/tech_notes.jhtml

http://www.handspring.com/developers/tech_notes.jhtml

Springboard Development Guide for Handspring Handheld Computers

- 58 -

8. Compatibility Testing

8.1. Compatibility Testing Overview
Developers who wish to use the Springboard-compatible logo must ensure that their products conform to the
Springboard software, electrical, and mechanical specifications. Developers are responsible for self-certifying their
products. Complete details are located on Handspring’s website here:

http://www.handspring.com/developers/compatibility_testing.jhtml

http://www.handspring.com/developers/compatibility_testing.jhtml

Springboard Development Guide for Handspring Handheld Computers

- 59 -

9. Springboard Trademarks and Logos

9.1. Springboard Trademarks and Logos Overview
This section of the document defines the specifications for the Springboard™ symbol and colors. It also provides
a view of available Springboard logos. Full details on trademarks and logos for the Springboard™ platform along
with the latest guidelines can be found on our website at.

 http://www.handspring.com/developers/dev_logos.jhtml

http://www.handspring.com/developers/support_programs.jhtml

Springboard Development Guide for Handspring Handheld Computers

- 60 -

9.2. Trademarks
SPRINGBOARD SYMBOL & COLOR

The Springboard symbol was designed to capture the modularity and flexibility of our Springboard technology. Shown here
are the color and black and white versions of the symbol. As with our corporate symbol, never alter or reproportion the
Springboard symbol in any way.

Figure 9-1. The Springboard Symbol

A

B

C

D

E A

B

D B & W : 1 0 0 % B L A C K

C O L O R : H S G R E E N (S I M I L A R T O P M S 3 4 1 5)

C O L O R : H S B L U E (S I M I L A R T O P M S 2 8 8)

C O L O R : H S Y E L L O W (S I M I L A R T O P M S 1 3 0)

M I N . S I Z E : 1 P I C A 9 . 5 P T SE

C

Springboard Development Guide for Handspring Handheld Computers

- 61 -

SPRINGBOARD SIGNATURES

The Springboard signature includes the symbol and the Springboard logotype used together in a specific orientation, as
shown. A variation on this signature, the Springboard Compatible signature, also is featured. As with our corporate signature,
consistent use of the elements that comprise the Springboard and Springboard Compatible signatures, helps strengthen and
reinforce our brand.

Figure 9-2. Springboard Signatures

A

B

B

C

D

S B C O M P A T I B L E S I G N A T U R E

S P R I N G B O A R D S I G N A T U R EA B M I N I M U M S I Z E : 2 P I C A S 6 P T S

C M I N I M U M S I Z E : 3 P I C A SD
S B C O M P A T I B L E S I G N A T U R E

S P R I N G B O A R D S I G N A T U R EA B M I N I M U M S I Z E : 2 P I C A S 6 P T S

CCC M I N I M U M S I Z E : 3 P I C A SDC

Springboard Development Guide for Handspring Handheld Computers

62

9.3. Logos

Figure 9-3. Color.springboard.gif

Figure 9-4. Color.tag.springboard.gif

Springboard Development Guide for Handspring Handheld Computers

- 63 -

Figure 9-5. SB.symbol.eps

Figure 9-6. SB.color.eps

Springboard Development Guide for Handspring Handheld Computers

- 64 -

Figure 9-7. Sbcom.color.eps

Figure 9-8. Symbol.rev.eps

Springboard Development Guide for Handspring Handheld Computers

- 65 -

Figure 9-9. SB.B&W.eps

Figure 9-10. Sbcom.B&W.eps

Springboard Development Guide for Handspring Handheld Computers

- 66 -

Figure 9-11. BW.springboard.gif

Figure 9-12. BW.tag.springboard.gif

Springboard Development Guide for Handspring Handheld Computers

- 67 -

10. Handspring Developer Agreement

HANDSPRING, INC.
Developer Agreement

PLEASE READ THE TERMS OF THE FOLLOWING AGREEMENT CAREFULLY. BY USING THE MATERIALS DISTRIBUTED
WITH THIS AGREEMENT (THE “DEVELOPMENT KIT”), YOU ARE AGREEING TO BE BOUND BY THE TERMS AND
CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS OF THIS
AGREEMENT, PLEASE DO NOT USE THE DEVELOPMENT KIT. INSTEAD, PLEASE DESTROY ALL COPIES OF THE
DEVELOPMENT KIT WHICH YOU MAY HAVE.

DEFINITION. “Springboard Enabled Products” are Handspring handheld computers that contain an external “slot” (the
“Springboard slot”) into which compatible third-party hardware or software products can be inserted.

LICENSE GRANT. Subject to the terms and conditions of this Agreement, Handspring hereby grants to Developer a non-
exclusive, non-transferable license under Handspring’s intellectual property rights in the Development Kit (a) to use,
reproduce and create derivative works of the materials provided by Handspring under this Agreement, solely internally in
connection with Developer’s development and manufacture of i) products which plug into the Springboard slot and meet
Handspring’s Springboard compatibility requirements (“Licensed Plug-Ins”) or ii) accessory products (such as keyboards
or reference manuals) for use with Springboard Enabled Products (such plug-in products and accessory products,
collectively, “Licensed Products”); (b) to make, have made, use, distribute and sell Licensed Products directly or indirectly to
end users for use with Springboard Enabled Products; and (c) to distribute the unmodified Development Kit in its entirety
(including this Agreement) to third parties who agree to be bound by the terms and conditions of this Agreement.

LICENSE RESTRICTIONS. Except as otherwise expressly provided under this Agreement, Handspring grants and Developer
obtains no rights, express, implied, or by estoppel, in any Handspring intellectual property, and Developer shall have no
right, and specifically agrees not to (a) transfer or sublicense its license rights to any other person; (b) decompile, decrypt,
reverse engineer, disassemble or otherwise reduce the software contained in the Development Kit to human-readable form
to gain access to trade secrets or confidential information in such software, except and only to the extent such activity is
expressly permitted by applicable law notwithstanding such limitation; (c) use or allow others to use the Development Kit, in
whole or part, to develop, manufacture or distribute any products other than Licensed Products; (d) use or allow others to
use the Development Kit, in whole or part, to develop, manufacture or distribute products (including Licensed Products) for
use as a plug-in or accessory to any product other than Springboard Enabled Products; (e) use or allow others to use the
Development Kit, in whole or part, to develop, manufacture or distribute any products incorporating an external or internal
slot design; or (f) modify or create derivative works of any portion of the Development Kit.

OWNERSHIP. Handspring is the sole and exclusive owner of all rights, title and interest in and to the Development Kit,
including, without limitation, all intellectual property rights therein. Developer’s rights in the Development Kit are limited to
those expressly granted hereunder. Handspring reserves all other rights and licenses in and to the Development Kit not
expressly granted to Developer under this Agreement. Subject to Handspring’s rights in the Development Kit and the
Springboard Enabled Products, Developer shall retain all rights in the Licensed Products developed by Developer in
accordance with this Agreement.

COMPATIBILITY TESTING AND BRANDING. Prior to Developer’s use of Handspring’s Springboard compatibility
trademark (the “Mark”) in connection with a Licensed Plug-In, Developer shall conduct reasonable testing in accordance
with Handspring’s compatibility testing guidelines to ensure that the Licensed Plug-In conforms in all respects to
Handspring’s Springboard compatibility requirements (the “Compatibility Criteria”). Developer agrees that it will not use
the Mark or make any statements claiming or implying compatibility with the Springboard slot in connection with any
Licensed Plug-Ins which have not passed such compatibility testing and that, if Handspring determines that any Licensed
Plug-In is not compliant with the Compatibility Criteria, Developer shall immediately cease use of the Mark in connection
with that Licensed Plug-In. All goodwill generated by Developer’s use of the Mark shall inure to Handspring’s benefit.

Subject to the terms and conditions of this Agreement, Handspring hereby grants to Developer a non-exclusive, non-
transferable license to use, subject to the guidelines set forth in Handspring’s trademark policy and other applicable
guidelines, (i) Handspring’s Springboard compatibility trademark solely in connection with the marketing and sale of
Licensed Plug-ins which comply with the Compatibility Criteria; and (ii) artwork, icons, logos, color schemes, and other
industrial designs and designations of source provided by Handspring to Developer hereunder solely in connection with the
marketing and sale of Licensed Products

Springboard Development Guide for Handspring Handheld Computers

- 68 -

DEVELOPER INDEMNIFICATION. Developer will defend at its expense any action brought against Handspring to the extent
that it arises from or relates to Developer’s development, manufacturing, marketing or distribution of Licensed Products, and
Developer will pay any settlements and any costs, damages and attorneys' fees finally awarded against Handspring in
such action which are attributable to such claim; provided, the foregoing obligation shall be subject to notifying Developer
promptly in writing of the claim, giving it the exclusive control of the defense and settlement thereof, and providing all
reasonable assistance in connection therewith. Notwithstanding the foregoing, Developer shall have no liability for any
claim of infringement to the extent required by compliance with the Compatibility Criteria.

WARRANTY DISCLAIMER. HANDSPRING MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, AS TO ANY MATTER
WHATSOEVER, AND SPECIFICALLY DISCLAIMS ALL WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
NONINFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE.

LIMITATION OF LIABILITY. EXCEPT FOR BREACHES OF THE SECTIONS ENTITLED “LICENSE GRANT”, OR “LICENSE
RESTRICTIONS”, IN NO EVENT WILL EITHER PARTY BE LIABLE TO THE OTHER FOR LOST PROFITS, LOST BUSINESS, OR
ANY CONSEQUENTIAL, EXEMPLARY OR INCIDENTAL DAMAGES ARISING OUT OF OR RELATING TO THIS
AGREEMENT, REGARDLESS OF WHETHER BASED IN CONTRACT OR TORT, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

TERM AND TERMINATION. This Agreement shall remain in effect for the partial calendar year ending on the first March
31 following the effective date, and shall automatically renew for additional one (1) year terms ending on each subsequent
March 31, except that the Agreement shall automatically terminate if either party materially breaches or is in default of any
obligation hereunder or if either party provides notice of non-renewal by January 1. The parties agree that Handspring may
provide notice by making the notice available in a manner similar to the manner in which the Development Kit was made
available.

GENERAL. This Agreement will be governed by and construed and interpreted in accordance with the internal laws of the
State of California, excluding that body of law applicable to conflict of laws. No waiver, amendment or modification of
any provision hereof or of any right or remedy hereunder will be effective unless made in writing and signed by the party
against whom such waiver, amendment or modification is sought to be enforced. No failure by any party to exercise, and
no delay by any party in exercising, any right, power or remedy with respect to the obligations secured hereby will operate
as a waiver of any such right, power or remedy. Neither this Agreement nor any right or obligation hereunder may be
assigned or delegated by Developer (including by operation of law) without Handspring’s express prior written consent,
which consent will not be unreasonably withheld, and any assignment or delegation without such consent will be void. This
Agreement will be binding upon and inure to the benefit of the successors and the permitted assigns of the respective
parties hereto. If any provision of this Agreement is declared by a court of competent jurisdiction to be invalid, void, or
unenforceable, the parties will modify such provision to the extent possible to most nearly effect its intent. In the event the
parties cannot agree, then either party may terminate this Agreement on sixty (60) days notice. This Agreement constitutes
the entire understanding and agreement of the parties hereto with respect to the subject matter hereof and supersedes all
prior agreements or understandings, written or oral, between the parties hereto with respect to the subject matter hereof.

	Springboard Software Development
	Software Development for Handspring Handhelds
	Generic Applications
	Handspring Palm OS GNU Tools
	Metrowerks CodeWarrior
	Other Development Environments

	Generic Applications on a Springboard Module
	Special Purpose Applications
	Application Development To Support Plug-and-Play
	Generic Applications
	Special-Purpose Applications

	Module Design Details
	Module Memory Space
	Module Access Time and Wait State
	Interrupts
	Interrupt Latency
	Power Management
	Power Management Options For Interrupt Handlers
	Module Insertion Notification
	Catching Module Removals

	Springboard Software Integration
	Module Setup Application
	Overriding Module Software
	Module Welcome Application
	Interrupt Handler Interaction

	S
	Software API Extension
	Checking Presence and Version of Handspring Extensions
	Utility Calls
	Generic Module Support in Palm OS
	Copy Protecting Module Applications
	API Calls
	HsAppEventHandlerSet
	HsAppEventPost
	HsCardAttrGet
	HsCardAttrSet
	HsCardErrTry/HsCardErrCatch
	HsCardEventPost
	HsCardPatchInstall
	HsCardPatchPrevProc
	HsCardPatchRemove
	HsDatabaseCopy
	HsEvtResetAutoOffTimer
	HsPrefGet
	HsPrefSet

	S
	Springboard Interface Pinout and Signal Description
	Pinout
	Signal Descriptions

	E
	Electrical Specifications
	DC electrical characteristics
	AC Characteristics
	General Information on Springboard Timing
	Read Cycle
	Write Cycle
	Reset Timing

	Mechanical Information
	Springboard Connector
	Geometry of the Springboard Slot
	Mechanical Interaction with the Handspring Handheld

	Springboard Module Base Color

	C
	Compatibility Testing
	Compatibility Testing Overview

	Springboard Trademarks and Logos
	Springboard Trademarks and Logos Overview
	Trademarks
	Logos

	Handspring Developer Agreement

