

Palm OS® Platform:
Software Protection

Aaron ARDIRI

Aaron Ardiri, ardiri.com ,
Rörstrandsgatan 12, SE 113-40 Stockholm, Sweden

Tel: +46 70 656 1143; Email: aaron@ardiri.com

Abstract. Software piracy is the unauthorized copying of software. It occurs in
many forms, however, the main forms are that of illegal copying and unauthorized
modification of software to avoid registration systems or notices. When a user
purchases software, they enter into a contract with the vendor and become a licensed
user of the program. This license does not transfer ownership of the program, but it
gives the user the right to use it. This paper will present issues that authors of
software on the Palm OS® [1] Platform should be aware of - in relation to software
licensing, electronic software distribution websites, anti-cracking techniques, and
the personal experiences of a developer who went underground into the piracy
community to exploit the techniques used in software piracy.

1. Introduction

Protecting software to fight piracy and unauthorized tampering is a difficult task. Developers must
first decide on a licensing scheme that best fits their business model, and then implement it. There
are many different schemes and implementations possible. The most common types will be
discussed in this paper, as well as discussion about various techniques that can help deter or slow
down the time it takes for the application to enter the piracy scene.

Unfortunately, describing a software protection scheme is a double-edged sword. On one side, it is
extremely helpful for developers to have as much detailed information as possible in order to create
a robust system. On the other, when this same information falls into the hands of those who wish to
defeat the protection, it becomes a trivial task. To reduce the ease by which prying eyes can use
such information, it is preferable to discuss the theory behind a protection scheme, and not reveal
too deeply the code level implementation.

To defeat software copy protection, familiarity with low-level assembly language and
understanding of various development tools, including a debugger is a requirement. To fully
understand how an application is compromised, it is necessary for developers to also be familiar
with these topics.

2. Software Licensing

All computer software is distributed with a particular license, which is imposed when the user
obtains a copy of the software. There are a variety of license types, well defined by the Free
Software Foundation [3], but in summary they are:

2.1 Free Software
Free Software is software that comes with the permission to use, copy, and distribute, either as-is or
with modification for free or with a fee. The most important factor of free software is that the source
code must be provided with it. Free software is the matter of freedom, not price. The GNU General
Public License (GPL) is an example of a true free software license.

2.2 Freeware
Freeware is software where the developer does not ask for a licensing fee, and the software may be
distributed freely in an unmodified state. The source code is generally not available and the product
must be used on an as-is basis. In the case where the source is available, the new developer must ask
permission from the original developer to modify and redistribute the software.

2.3 Shareware
Shareware is software similar to freeware; however, the developer asks users who continue to use
the software after the evaluation period has expired to pay a license fee. The source code is not
available, however, the developer encourages distribution of the software as-is. The developer may
implement a number of systems that will allow the user to try out the software.

The developer may do various things to encourage users to obtain registration for their products:

- disable application features,
- limiting usage of particular feature,
- “faith” system; offer full version with no concept of registration,
- present reminders of software registration status (dialogs, messages et al), or
- force the user to wait intentional time periods when performing tasks

The technique for doing this differs from developer to developer, and many other techniques exist.

2.4 Commercial
Commercial software is software that has been developed by a business that aims to make money
from any use of the software. Commercial software may not be redistributed, and, in many cases, a
smaller, crippled demonstration copy of the software is made available for evaluation purposes.

3. Electronic Software Distribution

Palm OS® Platform software can be distributed either in retail or over the Internet using an
electronic software distribution (ESD) website that handles credit card transactions directly, take out
a small processing fee, and pass revenues to the developer of the applications that are purchased.

3.1 The Purchase Process
ESD websites allow the consumer to navigate through a software catalogue and place items they
wish to purchase into a shopping cart. They proceed to a checkout and finalize their order by
supplying their email, credit card details, and HotSync TM user name or other pieces of information
required by the developer of the applications they purchased. An invoice is generated, and the
software developer is sent an email to acknowledge the purchase of their software item.

In many cases, the consumer is not given the product at the time of purchase. Developers are
emailed a report of purchases and must then personally contact their consumers and provide the
appropriate registration files and or keys. This causes some lengthy delays, especially when dealing
with developers overseas, and is not acceptable to the consumer.

3.2 RealTime Fulfillment™
RealTime Fulfillment™ is the ability to provide consumers who purchase a software program from
an electronic software distribution site instantaneous access to the registered version directly after
purchase. It can be done in two ways: provide a download of a full version, or present an unlocking
code that when entered, will enable previously disabled or time limited features of the program.

In Q1 2001, PalmGear H.Q. [5] will provide the ability for developers to generate unlocking codes
to users during the execution of the invoice for purchase of software. jCode, the system to be
provided by PalmGear H.Q., allows developers to edit, compile and test key generation algorithms
via a web browser without the installation of a development kit.

The introduction of this system will allow developers to use key based systems for registration,
without forcing the purchase-receive delay and manual processing of orders by developers. A
demonstration of the system is available at the following website:

http://www.ardiri.com/palm/jCode/

Since the algorithms are supplied to the ESD website, the developer is required to establish trust.
However, supplying an algorithm differs no way from supplying a serial number of full version of
the product, which a number of developers already do.

4. Registration Techniques

The most important decision to make when developing an application for resale is to decide how the
registration system should work with your application. It is important to consider all options that are
available and choose the one that will encourage the users to purchase the application. The choice of
the wrong technique may not allow the user of the application to satisfactorily complete a trial on
your product – and deter them from purchasing it.

4.1 Copy Protection Database Bit
The Palm OS® Platform implements its own form of copy protection which can prevent an
application or database from being beamed between devices from within the application launcher.
An application is essentially an executable resource database, and the programmer can set certain
properties of the application using a simple application programmer interface (API) call [4].

Err DmSetDatabaseInfo(UInt16 cardNo, LocalID dbID, const Char* nameP,
 UInt16* attributesP, UInt16* versionP,
 UInt32* crDateP, UInt32* modDateP,
 UInt32* bckUpDateP, UInt32* modNumP,
 LocalID* appInfoIDP, LocalID* sortInfoIDP,
 UInt32* typeP, UInt32* creatorP);

Every database has particular attributes, and can be set using the fourth (4th) parameter of this
system call. Using the following code, it is possible to add this type of copy protection to your
application. Newer versions of the development compilers support setting this bit at compile time.

{
 UInt16 card, attributes;
 LocalID dbID;

 SysCurrAppDatabase(&card, &dbID);
 if (dbID != NULL) {
 DmDatabaseInfo(card, dbID, NULL, &attributes, NULL, NULL, NULL,
 NULL, NULL, NULL, NULL, NULL, NULL);
 attributes |= dmHdrAttrCopyPrevention;
 DmSetDatabaseInfo(card, dbID, NULL, &attributes, NULL, NULL, NULL,
 NULL, NULL, NULL, NULL, NULL, NULL);
 }
}

The application launcher checks to see if this bit is set, and will
prevent any beaming of the database. A protected application is
marked using a lock icon in the beam dialog (as seen on right).

The idea is simplistic and provides limited protection, however, many
third party file management utilities do not check this attribute – and
beaming of databases (including applications) occurs very easily. It is
also very easy to write a small Palm application that resets this bit on
all databases within the device, hence fooling the mechanism.

Using this technique may actually be more damaging to the developer. Distribution of a product is a
very important issue – the ability for the user to simply beam the application to another provides
free “word of mouth” advertising of the product. Registered versions can be beamed to other users
and made demonstration versions if the application is designed correctly.

4.2 Serial Number
A serial number is a number or string that is common between all registered users of a particular
piece of software. When the user enters this serial number, the program has all its features activated.
The developer will normally provide a dialog for the user to supply a serial number or string, and
the handling of that entry is performed in a manner similar to the following:

program.c:
#define SERIALNUMBER 12345
#define incorrectSerialAlert 1001

{
 codeEntered = StrAToI(strCode);
 if (codeEntered != SERIALNUMBER)
 FrmAlert(incorrectSerialAlert);
 else
 registered = true;
}

This code will produce assembler similar to the following:

program.s:
 ...
2F03 MOVE.L D3,-(A7)
4E4FA0CE TRAP #15
 DC.W sysTrapStrAToI
4FEF000C LEA 12(A7), A7
0C403039 CMPI.W #12345!$3039,D0
6708 BEQ L9
3F3C03E8 MOVE.W #1000!$03E8,-(A7)
4E4FA192 TRAP #15
 DC.W sysTrapFrmAlert
7000 L9 MOVEQ #0,D0
 ...

The serial number is right in front of you! Hidden in that mess of assembly code is a comparison of
the D0 register (which contains the result from the StrAToI call) with a constant value. In this case,
the value being compared is 0x3039, or 12345 . This is the case when dealing with simple numbers,
if comparing strings the StrCompare API [4] call is used, and the string being compared has its
address loaded using an LEA instruction (to a label in the code) prior to being called. Searching the
code for that label will lead you straight to memory location containing the required string.

The developer must place a lot of trust on their users to ensure that the serial number is not
broadcast to their friends or the world. A ‘good faith’ user may purchase the product and simply
pass on the information onto others. Pooling for the cost of an application may occur in this case.

4.3 Nag Screen
A “Nag Screen” is a dialog that appears when you start an application
reminding you to register. The purpose is to constantly nag the user to
buy the software until they get to a point where they are sick and tired
of seeing it.

Implementation of a nag screen is simple, using the following API [4]:

UInt16 FrmAlert(UInt16 alertID);

These types of applications are very vulnerable to attack and modification, as doing the adjustment
is a very simple task for even the beginner cracker. Lets consider the following code snippet:

program.c:
#define nagScreenAlert 1000

{
 FrmAlert(nagScreenAlert);
}

This code will produce assembler similar to the following:

program.s:
 ...
3F3C03E8 MOVE.W #1000!$03E8,-(A7)
4E4FA192 TRAP #15
 DC.W sysTrapFrmAlert
 ...

The simple task of replacing the call to the API is all that is required to prevent the alert from
appearing on the screen. The crack would be as simple as changing the TRAP call (0x4E4FA192)
into a series of NOP instructions (0x4E714E71) – two NOP statements are required as the TRAP uses
four bytes and a NOP requires only two bytes. The resulting code would look as follows:

program.s:
 ...
3F3C03E8 MOVE.W #1000!$03E8,-(A7)
4E71 NOP
4E71 NOP
 ...

The nag screen will never appear again once these modifications are in place, which can be done
using your favourite HEX (binary) editor.

4.4 Code Generation Systems
The most common mechanism for registration is the use of an application based code generation
algorithm that allows the developer to assign each user a pseudo-unique code that allows them to
gain access to all features of the application.

Since each user has a unique code specifically for them, transfer of the application can occur
without posing a threat to the impact of sales. In many cases, the “beam” factor will allow the
application to spread further and increase sales.

The Palm OS® Platform provides an inbuilt pseudo-unique piece of information. Each user must
HotSync™ their device in order to perform backups, update the data on their device, or install
software. This information is pseudo-unique as in many cases two people in close proximity of each
other would not use the same HotSync™ user name (if they did, they wouldn’t perform a
HotSync™ on the same machine). It is possible to obtain the HotSync™ username within an

application using the following code [4].

#include <System/DLServer.h>

{
 CharPtr username =
 (Char *)MemPtrNew(dlkUserNameBufSize * sizeof(Char));
 DlkGetSyncInfo(NULL,NULL,NULL,&username,NULL,NULL);

 ...

 MemPtrFree(username);
}

The HotSync™ username causes many small problems. Most users don’t even know what it is, yet
alone are capable of typing it in correctly when they purchase your product. Care needs to be taken
in respect to punctuation, capitalization, spacing and localization of the HotSync™ user name. The
most flexible manner to deal with this problem is to translate the binary representation into another
form that the user can supply, as can be done with development kits like RegCode [6].

The Palm III series of devices (running Palm OS® 3.0) introduced another form of unique
identification, the flash ROM serial number. In the case where the device contained a flash ROM
chip, it was possible to obtain a unique serial number for each user, using the following code [4]:

{
 CharPtr serialNo;
 UInt16 serialLength, returnVal;

 returnVal =
 SysGetROMToken(0,sysROMTokenSnum,&serialNo,&serialLength);
 if ((!retval) && (serialNo) && ((UInt8)*serialNo != 0xff)) {
 ...
 }
}

However not all Palm OS® Platform devices (Handspring [2], IIIe, m100) contain flash ROM
memory chips. They contain what is known as mask ROM chips, which do not have this serial
number and are not user upgradeable. It also poses a problem when the user damages or loses their
device – a replacement would have a different flash ROM serial number and require the user to re-
register or re-purchase the application. Palm, Inc. has not committed to supplying this information
on its own or licensee devices.

As an alternative, the developer may allow the user to manually enter or provide a string that is used
to generate the unlocking key value. Since it is not tied specifically to a single device, it allows a
user to use the same username/key combination on a number of devices (including their friends’),
but also allows users to break devices (new ROM chip or HotSync™ username) and stay registered
without having to go through the process of getting a new registration (they did pay remember).

Once the user information is obtained, the developer writes a function similar to the following:

UInt16 generateRegistrationCode(CharPtr username)
{
 UInt16 code, i;

 code = 0xCAFE;
 for (i=0; (i < dlkUserNameBufSize) && (username[i] != '\0'); i++) {
 code += (((username[i] & 0xAA) << 8) | (username[i] & 0x55));
 code = ((code << 1) | ((code & 0x8000) >> 15));
 }

 return code;
}

It is important to make the code generation as non-simplistic as possible. As soon as someone
figures out how the code is generated – a key generator will be available. One of the most tedious
tasks for someone who wants a free copy of your software is to sit down and figure out how this
algorithm works. The more cryptic it is, the longer it will take them to figure out.

When a key generator is available, in many cases subsequent releases of an application do not need
to go through the cracking phase again – as they will then have a tool to bypass all protection until
the key generation algorithm changes.

Another approach is to try the reverse – supply the user with a code that is then used to generate a
string that can to be compared against the string that is gathered on the device. This technique
makes it slightly harder to generate a key generator, as the algorithm to convert a string to a number
is different from converting a number to a string – which means the reuse of your code generation
algorithm won’t occur.

4.5 Usage Counter
“Trial Periods” are very common in applications, and may be limited
to a number of application executions or a pre-defined period of time.

A common usage counter example is the “30 day trial period”.

This type of registration allows a user to gain full access to the
application during the limited trial period, and can be implemented as
follows:

typedef struct
{
 UInt32 keyData; // the time the application was first started
 UInt8 keyValue; // the number of days remaining in the trial
} KeyType;

{
 KeyType *key = NULL;

 // load the key from somewhere
 ...

 // a key exists, lets do our checking
 if (key != NULL) {
 UInt32 diff = TimGetSeconds() - key->keyData;

 // 30 days is over?
 if (diff >= 0x00278D00) key->keyValue = 0; // 0x00278D00 = 30 days
 else
 key->keyValue = 30 - (diff / 0x00015180);// 0x00015180 = 1 day
 }

 // no key, create it.
 else {
 key = (KeyType *)MemPtrNew(sizeof(KeyType));
 key->keyData = TimGetSeconds();
 key->keyValue = 30;
 }

 // save the key somewhere
 ...

 // clean up
 MemPtrFree(key);
}

The application must store some information somewhere, such that the remaining time available can
be determined. The “KeyType” structure contains all the relevant information required for an
application to manage its usage based on time. It keeps track of the first time the application was
executed, and the number of days remaining in the trial.

Where does one store this key information?

The answer to this question is at the discretion of the developer. It could be stored in one of the
following places:

- saved preference
- registration database
- registration manager software

The Palm OS® Platform has a very efficient application manager such that when an application is
deleted, all the associated preferences and databases are deleted as well.

If this key is stored in a database or preference that shares the same creator ID as the application, it
will be deleted when the user removes the application from the device. Re-installation of the
software will allow them to regain demonstration access.

Using a creator ID other than the application is known as “shadowing” behind another application.
The problem with this technique is that even if the user has no intension of reinstalling the
application – a small amount of data will remain on the device. Leaving data behind in this manner
is seen negatively, as memory on the devices themselves is already limited.

Is forcing the user to remove the application and re-install it enough of a hassle to make them buy?

Another technique would be to introduce a software registration manager into the device. The
developer could use this storage space to keep necessary information like this, but it too, will also
be subject to deletion and takes up valuable memory space.

5. Anti-Cracking Techniques

The art of being successful with anti-cracking is the ability to delay or make the process of
generating a pirate version or modification of your application. A number of techniques exist for
doing this, however they are most powerful when used in conjunction with each other – making a
“can of worms” for prying eyes to deal with.

5.1 Special Builds
A common approach used by a few developers is to build two or more separate versions of the
product for distribution. A smaller, feature limited version for demonstration purposes and a larger
full feature version for those registered users.

Although regarded as one of the best mechanisms to protect your software, as its not possible to
modify the demonstration version to be registered, it does not allow for beaming of the application
or prevent distribution between people who have the registered product. Just as the demonstration
version is made available for download on the Internet, so will the registered version.

5.2 Registration Check
If an application has implemented a registration system where some lockout is performed, the
application must check if the user has registered or if the demonstration period has completed. The
logic is simple; if they have registered let them continue – if not, show a dialog informing the user
that their trial is over and they must purchase the product.

Many application developers opt for the simple solution, by writing a single function that, based on
what the application knows, returns a true or false value that represents the registration status.

program.c:
Boolean checkRegistered()
{
 Boolean result = false;

 // check user registration (using appropriate technique)
 ...

 return result;
}

This code will produce assembler similar to the following:

program.s:
4E560000 LINK A6,#0
 ...
57C0 SEQ D0
4400 NEG D0
4E5E UNLK A6
4E75 RTS

The return type to a function on the Palm OS® Platform is stored in the D0 register. After the
application calls the function, it compares the result stored in this register to determine what needs
to be done next.

program.s:
4E560000 LINK A6,#0
 ...
7001 MOVEQ #1,D0
4E5E UNLK A6
4E75 RTS

Replacing the assembler instruction before the UNLK command with a MOVEQ #1,D0 instruction
(0x7001) makes this routine always return a true result. This means, whenever a check is
performed, the application thinks it is always registered – and the program continues on as
appropriate.

The modular approach to handling this makes it a simple target, as the check is done in one place.

Its pretty easy to prevent this from happening, using the inline attribute, which tells the compiler
to not make the function call a subroutine and instead place the contents on the function where it is
being called.

program.c:
inline Boolean checkRegistered()
{
 ...
}

Each call to the checkRegistered() function will result in the same code being duplicated in
many places through out the application – which means more patches are required.

Another technique is to not use a Boolean result variable. By returning an integer value, it is not
known what the real return result should be – making it a guessing game, to some extent (it will
always be able to trace the call somewhere – it just takes longer).

5.3 Palm OS® Emulator (POSE) Detection
The Palm OS® Emulator is a very important tool as it provides a safety net for reckless tampering
of software without the risk of destroying data or causing damage to the device. When used in

conjunction with a powerful debugger tool, it proves an excellent software debugging and patching
environment. Without these tools, it would be very tedious and risky to perform software patching.
You can detect if your application is running on POSE using the following two techniques:

Boolean onPOSE()
{
 UInt32 value;
 Err err;

 // works on all versions of the Palm OS
 return (FtrGet('pose', 0, &value) == errNone);
}

or:

#include "HostControl.h" // distributed with POSE

Boolean onPOSE()
{
 // works only on versions of the Palm OS >= 3.0
 return (HostGetHostID() == hostIDPalmOSEmulator);
}

With careful design, it may be possible to implement some fancy craftwork, making it impossible or
very difficult for someone to tamper with the software on the emulator. Create a few false leads for
the people with prying eyes if the emulator is detected. It’s great knowing where the needle is and
watch them search in the wrong haystack.

Palm Debugger may also be connected to a real device for debugging purposes, eliminating the
need for the Palm OS® Emulator.

5.4 Code Checksum
The ultimate defence against software patching is to be able to detect the presence of modification.
A checksum, though normally used to verify large chunks of data that are transmitted between
sources, can also be used to determine if a modification has been made to an application. The API
[4] provides a routine, at system level to perform a CRC16 level checksum.

{
 MemHandle codeH;
 void *codeP;
 UInt32 codeSize;
 UInt16 checkSum;

 // obtain a reference to the code0001.bin resource
 codeH = DmGet1Resource('code', 0x0001);
 codeSize = MemHandleSize(codeH)
 codeP = (void *)MemHandleLock(codeH);

 // determine the checksum of the code segment
 checkSum = Crc16CalcBlock(codeP,codeSize,0);

 MemHandleUnlock(codeH);
}

The value returned from the system call can then be used to determine the validity of the code
resource that was checked. If the resulting checksum is not what is expected, the application can
bring up a dialog warning the user or force the application to be unregistered.

It may, however, be more appropriate for the developers to write their own checksum routine. The
Crc16CalcBlock routine uses a well-known checksum algorithm, and using a standard routine
makes it much easier to calculate a new checksum result value if a patch is applied to the

application. In the case where a custom routine is written, it must also be reverse engineered to
determine the correct checksum value.

5.5 Patch Detection
Another form of verifying the binary of the application is to analyse it in search of various known
assembler op-codes that have been inserted into the distributed application. The two most powerful
assembler op-codes used in the patching of software are NOP (0x4E71) and TRAP #8 (0x4E48). In
many cases, these op-codes are not found in the release versions of the applications – as they are
used mainly to aid in the development of the software.

The following code scans all code segments and determines the existence of these two op-codes:

{
 MemHandle codeH;
 void *codeP;
 UInt32 codeSize;
 UInt8 patchStatus, i;

 patchStatus = 0;
 for (i=0; i<CODE_RES_COUNT; i++) {

 // obtain a reference to the resource
 codeH = DmGet1Resource('code', i);
 codeSize = (MemHandleSize(codeH) >> 1); // we are counting words
 codeP = (void *)MemHandleLock(codeH);

 // search for a patch (0x4e48 or 0x4e71)
 asm("movem.l %%d0-%%d1/%%a0-%%a1, -(%%sp)" : :);

 asm("move.l %0, %%a0" : : "g" (codeP));
 asm("move.l %0, %%a1" : : "g" (&patchStatus));
 asm("move.l %0, %%d0" : : "g" (codeSize-1));

 asm("
 move.w (%%a0), %%d1
 eori.w #0xffff, %%d1
 cmpi.w #0xb18e, %%d1 | check if opcode is 0x4e71
 beq L01
 cmpi.w #0xb1b7, %%d1 | check if opcode is 0x4e48
 beq L02
 bra L03
 L01:
 ori.b #1, (%%a1) | bit one set if NOP
 bra L03
 L02:
 ori.b #2, (%%a1) | bit two set of TRAP #8
 L03:
 addq.l #2, %%a0
 dbra %%d0, L01
 " : :);
 asm("movem.l (%%sp)+, %%d0-%%d1/%%a0-%%a1" : :);

 MemHandleUnlock(codeH);
 }
}

The above code is specifically designed for use with the PRC-Tools (GNU gcc) development
environment; however, it should not be too cumbersome a task to write it to be compatible within
the CodeWarrior® development environment.

A reference to each code segment is obtained, and then a linear search is performed looking for the
two op-codes (0x4E71 and 0x4E48). XOR’ing with 0xFFFF is required to prevent the patch

detection code from finding the two op-codes within it. The scanning code was written in
assembler; to force this checking style (required) – good optimizers would not perform it this way.

It is also possible for the developer to use this mechanism to count a specific number of op-codes
within the application. Just performing the “detection” and storing it in a Boolean result will make
it simple prey – just set the value to false, and the application won’t know any better.

A more advanced technique would be to manually insert a pre-defined number of op-codes into the
application, and use that count as a dependency or offset within your application. With the
introduction of another op-code, the number changes, and can be used to prevent the program from
actually running. Consider the following code:

void theCodeToExecuteIfNOTPatched()
{
 ...
}

void theCodeToExecuteIfPatched()
{
 ...
}

{
 void *functionList[] = {
 &theCodeToExecuteIfPatched,
 &theCodeToExecuteIfPatched,
 &theCodeToExecuteIfNOTPatched,
 &theCodeToExecuteIfPatched
 };
 void (*function)(void);

 // determine which function to execute
 function = (void *)functionList[opcodeCount % 4];
 function();
}

In this example, the code will only execute correctly if the op-count modulus 4 is 3. The
introduction of an additional op-code causes the count to change, and call a different function.

5.6 Encrypted Code
An applications algorithm is always open – to the point of being able to read it in the operating
systems assembly language. The use of de-compilation utilities makes source code available to
prying eyes for inspection – and with enough understanding of the platform specific assembly
language these users can determine or modify the logical processing of an application.

One technique to prevent the basic “de-compilation” of your application is to use encryption.

Unfortunately, support for doing this type of operation is not normally built into the compiler. In
many cases, a third party utility will need to be written to perform the encryption of code after the
normal build process is complete.

{
 MemHandle codeH;
 UInt32 codeSize;
 UInt8 *codeP;

 // duplicate the encrypted resource into memory
 codeH = DmGet1Resource('data', 0x1111);
 codeSize = MemHandleSize(codeH)
 codeP = (UInt8 *)MemPtrNew(codeSize);
 MemMove(codeP, MemHandleLock(codeH), codeSize);

 MemHandleUnlock(codeH);

 // dynamically modify the data stored in the codeP pointer
 // ...

 // execute the function
 {
 void (*myCode)(void); // the function specification

 myCode = (void *)codeP;
 myCode();
 }

 // clean up
 MemPtrFree(codeP);
}

In the above example, the assumption has been made that within a specific resource there is an
encrypted version of a function that needs to be executed. The first step is to obtain a copy of this
resource, placing it on the dynamic heap by allocating memory and copying the resource contents.
Once a copy of the resource has been obtained, it is possible to perform decryption on the memory.
Given this pointer, and once the code it contains has been safely converted into the native platform
binary language, a function pointer can be defined and the code can be executed.

What this offers the developer is the assurance that simple de-compilation of an application will not
reveal the algorithms used within the application. However, with the use of a debugger, a memory
dump of the application can be obtained while the program is running. This memory dump can then
be de-compiled and viewed by an external party. It does not matter how strong your encryption
techniques are – prying eyes can just wait until the decryption is done and then perform this
memory dump.

Providing some dependency on a user unique resource places the requirement that at least one
purchase must be made of your product to get a copy of the application binary. In many cases, users
dealing with illegal copies of software are not willing to pay for even one copy of the software – it
may provide more delay in the piracy process.

5.7 Self-Modifying Code
Dynamically changing runtime code is a very interesting and challenging area, however, in many
cases it is very difficult to implement and requires a platform specific understanding of how the
application will be executed on the platform that is being targeted.

{
 // turn off memory semaphore protection
 MemSemaphoreReserve(true);

 // modify memory inside the application (or anywhere else on device)
 // ...

 // turn on memory semaphore protection
 MemSemaphoreRelease(true);
}

The use of this technique, when done correctly, can surely throw prying eyes off course and waste a
lot of their time (that’s a good thing) – however, doing this type of operation can be very dangerous
or cause your application to have problems when being used by users. For example, the application
will only execute when it is stored in RAM – moving it to an external memory card or into flash ROM
will cause the memory writing operations to fail.

5.8 Code Splitting
An interesting argument in the cracking arena is “if the registered code isn’t there – don’t bother.”

It is practically impossible for someone to tamper with your application to make it registered if the
code that does actions only available to registered users is not stored in the application itself.
Implementing this technique is done in a similar manner to which the encryption of code segments
is performed. A reference to a memory location is obtained and then it is executed.

{
 DmOpenRef dbRef;

 // try and open the database
 dbRef =
 DmOpenDatabaseByTypeCreator('_key',appCreator,dmModeReadOnly);
 if (dbRef != NULL) {

 MemHandle recordH;
 // get a reference to the first record
 recordH = DmGetRecord(dbRef, 0);

 // execute the function
 {
 void (*myCode)(void); // the function specification

 myCode = (void *)MemHandleLock(recordH);
 myCode();
 MemHandleUnlock(recordH);
 }
 }
}

In this example, the application tries to locate an external database of a known creator id and
database type. If it is found, the first record is obtained, locked and then executed. If the database
was not available, the function call would not be made, and the developer could bring up a dialog
saying that the functionality is not available.

The demonstration version is the registered version. From a user perspective, they install the
application for demonstration purposes and use the software as appropriate. Upon purchase of the
application, the user will be provided with an additional file to install onto their device. The nature
of the application is such that having the file means you are registered, and not registered if it
cannot be found. Users will be able to beam the application to other users, even if it is registered, as
the additional database will not be beamed. With additional checks against the HotSync™
username, it is possible to make the database pseudo-unique to each user.

6. CASE STUDY: Liberty - The GameBoyTM Emulator

Liberty [7] is the first GameBoy™ Emulator for the Palm OS® Platform. Developed jointly by
Michael Ethetton and Aaron Ardiri, Liberty has received outstanding press coverage for achieving
what many people had thought, “could not be done”.

Since Liberty is a commercial product, the descriptions about exactly how the registration scheme
operates internally is something for the imagination of the reader. The purpose of describing it is to
show the effort required to implement a sophisticated registration system.

6.1 Design
The initial demonstration version of Liberty allowed the user to emulate GameBoy™ game images,
which were only 32Kb in size that mainly consisted of demo or freeware applications. At the time,
over 50 GameBoy™ game images were known to meet this requirement.

After receiving a lot of negative user feedback about the limit imposed in the first version,
subsequent versions of Liberty provided a trial period of 30-time execution of the application on
any sized GameBoy™ game image. Once the trial usage period had expired, the user was restricted
to playing GameBoy™ rom images of 32Kb in size.

6.2 Implementation
To understand the process of how the Liberty application implements its registration system, it is
important to understand how the application is structured. Liberty is a multi-segmented application
due to its size, but it also makes the act of implementing a registration system easier. A total of
seven (7) code segments are defined within the liberty application.

code0000.bin - system code segment
code0001.bin - the main code segment
code0002.bin - registration routines
code0003.bin - the abstract device layer
code0004.bin - GameBoy™ emulation routines
code0005.bin - help system
code0006.bin - registration system loader
code0007.bin - encryption key

The registration logic is as follows (in basic terms):

LibertyRegistration()
{
 // tampering check
 perform a code scan, looking for NOP, TRAP #8
 if modified
 destroy code0006.bin code segment (self-terminate)
 endif

 // registration loader
 load the code0006.bin resource into the dynamic heap
 using code0002.bin as a key, decrypt it
 execute the decrypted code
 discard the memory used.

 // continue with the program
}

To prevent new comers to the piracy scene, there is nothing like having an application crash hard
when someone tries to patch the binary using a NOP or TRAP #8 (debugging trap) instruction. If a
modification is detected, the application self-destructs. It’s annoying and is disabled fairly quickly.

The code0006.bin code segment is encrypted based on the code0002.bin code segment. It
contains the mechanism for loading the registration system and is encrypted to prevent prying eyes
from seeing what exactly is going on. What this provides is added protection in the case that the
first patch detection systems are bypassed.

registrationLoader()
{
 // sanity
 assume no demo, no registration

 // key resource search
 locate the registration key database
 if database found
 load the first record info the dynamic heap
 using code0007.bin and the HotSync™ username, decrypt it
 if demo database
 perform a 30 trial limit check
 end if
 store registered routine for later use
 end if
}

Modification to the code0002.bin resource causes the registration loader to decrypt incorrectly.
The registration loading routine is responsible for locating the registration key, determining if it is a
demonstration version or registered, and prepares the system for use. Its purpose is to provide the
application with the additional code that is not available in the demonstration version of the
application.

When a user purchases Liberty or wants to perform a trial of the application, they must install an
additional database, which contains code that gives them full access to the features of the
application. The demonstration version and registered version of the product is the same file, and, as
a result allows for the beaming of the application amongst users without the need to worry about
piracy.

The demonstration key is identical in nature to a full version; however, it has been encoded with a
special HotSync™ username that had a 0.01% chance of being used by a normal user.

Illegal distribution between users does not occur as the key file unique to each user. This is
accomplished by using the first name of the HotSync™ username to determine a starting offset for
the encryption algorithm that uses the code0007.bin code segment as its key. The encryption
algorithm uses an XOR instruction and dynamically modifies the key after each byte is processed.

It all comes down to the following code segment in Liberty:

{
 // lock down the first 32K
 globals->emu.ptrPages[0] =
 (UInt8 *)MemHandleLock(DmGetResource(datType,0));
 globals->emu.ptrPages[1] =
 (UInt8 *)MemHandleLock(DmGetResource(datType,1));

 // load and lock the "remainding" rom chunks :))
 {
 GameAdjustmentType adjustType;

 // define the "adjustment"
 adjustType.adjustMode = gameLoadROM;
 adjustType.data.loadROM.pageCount = globals->emu.pageCount;
 adjustType.data.loadROM.ptrPages = globals->emu.ptrPages;

 // do it! :))
 RegisterAdjustGame(prefs, &adjustType);
 }
}

The first 32Kb of the GameBoy™ game image are locked down regardless of the situation. In the
event where the game image is larger than 32Kb, calling the code stored in the registration key
database locks the additional resources. Liberty ensures a game image larger than 32Kb is not
emulated if the application is not registered.

Additional development tools were required in order to perform the post compilation process of
encrypting code resources and separating the registered code into an external database file.

The design and implementation of this system required approximately one month of effort.

7. Conclusions

This paper has described a number of issues that a developer must consider when writing
applications for distribution on the Palm OS® Platform. The choice of registration technique is
always a hard decision, yet it has to be made at some point. A number of issues were discussed here
and hopefully provide some help in making this type of decision.

Investigating methods of registration from a technical point of view is an interesting task. It is
always possible to make an application take a bit longer to enter the piracy scene.

The ultimate goal is to satisfy the following equation:

Time(to perform crack) >= Time(cracker willing to put into it) AND
Threshold(annoyance provided to user) < Threshold(accepted by user)

Unfortunately, it is not that simple.

Piracy relies solely on demand – supply is never the issue. The more popular the application, the
more likely it will be provided in an illegal form. It is very common for applications such as games
and essential tools to find their way to the piracy scene very quickly.

Fighting piracy is a very difficult task.

Every war has a loser. The losers of the piracy war are not the developers or the piracy community
– it’s the most important person of all, the user. Registration systems were created to force payment
from users for the effort that has been performed to produce a particular product. The decision that
needs to be made is deciding at what point will the user purchase the application.

It is also good to consider why the piracy scene exists in the first place.

The piracy scene is generally run purely on pride . The whole idea of piracy is to get applications
for free – I don’t see anyone sending pay cheques out to these guys, and some of them put a lot of
effort into it. It’s like kicking the all-important last second goal in your high school football game.

Why are we doing all this? The answer is very simple – we shouldn’t.

I performed the anti-cracking research to satisfy my own personal desires. I wanted to know how it
was done – purely out of interest. In the process I put a lot of my own time and effort into it,
expanding on my knowledge about the subject. However, at the same time, I provided the fuel
needed to keep the piracy scene in existence. The challenge keeps the system ticking. The Liberty
registration system, as was described earlier is not trivial, and has been compromised.

Implement what is required to keep honest users honest – they are important, don’t fight the battle.

References

[1] Palm Computing, http://www.palm.com/
[2] Handspring, http://www.handspring.com/
[3] Free Software Foundation. http://www.gnu.org/philosophy/categories.html.

Categories of Free and Non-Free Software
[4] Palm Computing. http://www.palmos.com/

PalmOS™ SDK 3.5 Reference
[5] PalmGear H.Q, http://www.palmgear.com/
[6] Palm Creations. http://www.palmgear.com/software/showsoftware.cfm?prodID=2997

RegCode Development Kit
[7] Gambit Studios, LLC. http://www.gambitstudios.com /

Palm, Palm Computing and HotSync are registered trademarks of Palm, Inc.
RealTime Fulfillment is a registered trademark and jCode is a service trademark of PalmGear H. Q.
CodeWarrior is a registered trademark of Metrowerks.
All other trademarks are property of their respective owners.

