Palm OS® Platform:
Softwar e Protection
Aaron ARDIRI

Aaron Ardiri, ardiri.com,
Rorstrandsgatan 12, SE 113-40 Stockholm, Sweden
Tel: +46 70 656 1143; Email: aaron@ardiri.com

Absgract. Software piracy is the unauthorized copying of software. It occurs in
many forms, however, the main forms are that of illegd copying and unauthorized
modification of software to avoid registraion systems or noticess When a user
purchases software, they enter into a contract with the vendor and become a licensed
user of the program. This license does not transfer ownership of the program, but it
gives the user the right to use it. This paper will present issues tha authors of
software on the PAm OS® [1] Plaform should be aware of - in rdaion to software
licensng, dectronic software didtribution websites, anti-cracking techniques, and
the persond experiences of a developer who went underground into the piracy
community to exploit the techniques used in software piracy.

1. Introduction

Protecting software to fight piracy and unauthorized tampering is a difficult task. Developers must
first decide on a licensng scheme that best fits their business model, and then implement it. There
are many different schemes and implementations possible. The most common types will be
discussed in this paper, as well as discussion about various techniques that can help deter or dow
down the time it takes for the gpplication to enter the piracy scene.

Unfortunately, describing a software protection scheme is a double-edged sword. On one side, it is
extremely helpful for developers to have as much detailed information as possible in order to create
arobust syssem. On the other, when this same information falls into the hands of those who wish to
defeat the protection, it becomes a trivia task. To reduce the ease by which prying eyes can use
such information, it is preferable to discuss the theory behind a protection scheme, and not reved
too deeply the code level implementation.

To defeat software copy protection, familiarity with low-level assembly language and
underdanding of various development tools, incuding a debugger is a requirement. To fully
understand how an application is compromised, it is necessary for developers to dso be familiar
with these topics.

2. SoftwareLicensing

All computer software is distributed with a particular license, which is imposed when the user
obtains a copy of the software. There are a variety of license types, well defined by the Free
Software Foundation [3], but in summary they are:

2.1 Free Software

Free Software is software that comes with the permission to use, copy, and distribute, either as-isor
with modification for free or with a fee. The most important factor of free software is that the source
code must be provided with it. Free software is the matter of freedom, not price. The GNU Genera
Public License (GPL) is an example of atrue free software license.

2.2 Freeware

Freeware is software where the developer does not ask for a licensing fee, and the software may be
digtributed fredy in an unmodified state. The source code is generaly not available and the product
must be used on an as-is basis. In the case where the source is available, the new developer must ask
permission from the origina developer to modify and redistribute the software.

2.3 Shareware

Shareware is software similar to freeware; however, the developer asks users who continue to use
the software after the evaluation period has expired to pay a license fee. The source code is not
available, however, the developer encourages distribution of the software as-is. The developer may
implement a number of systems that will alow the user to try out the software.

The developer may do various things to encourage users to obtain registration for their products:

- dissble application features,

- limiting usage of particular fegture,

- “faith” system; offer full verson with no concept of registration,

- present reminders of software registration status (dialogs, messages et d), or
- force the user to wait intentional time periods when performing tasks

The technique for doing this differs from developer to developer, and many other techniques exit.

2.4 Commercid

Commercid software is software that has been developed by a business that aims to make money
from any use of the software. Commercial software may not be redistributed, and, in many cases, a
smaller, crippled demonstration copy of the software is made available for evaluation purposes.

3. Electronic Softwar e Distribution

Pam OS® PFatform software can be digtributed either in retail or over the Internet using an
electronic software digtribution (ESD) website that handles credit card transactions directly, take out
asmall processing fee, and pass revenues to the developer of the applications that are purchased.

3.1 The Purchase Process

ESD websites adlow the consumer to navigate through a software catalogue and place items they
wish to purchase into a shopping cart. They proceed to a checkout and findize their order by
supplying their email, credit card details, and HotSync™ user name or other pieces of information
required by the developer of the agpplications they purchased. An invoice is generated, and the
software developer is sert an email to acknowledge the purchase of their software item.

In many cases, the consumer is not given the product a the time of purchase. Developers are
emailed a report of purchases and must then persondly contact their consumers and provide the
appropriate regigration files and or keys. This causes some lengthy delays, especialy when dedling
with developers overseas, and is not acceptable to the consumer.

3.2 Red Time Fulfillment™

Real Time Fulfillment™ is the ability to provide consumers who purchase a software program from
an dectronic software didtribution Ste instantaneous access to the registered version directly after
purchase. It can be done in two ways. provide a download of a full version, or present an unlocking
code that when entered, will enable previoudy disabled or time limited festures of the program.

In Q1 2001, PAmGear H.Q. [5] will provide the ahility for developers to generate unlocking codes
to users during the execution of the invoice for purchase of software. j Code, the system to be
provided by PAdmGear H.Q., dlows developers to edit, compile and test key generation dgorithms
via aweb browser without the ingtdlation of a development kit.

The introduction of this system will alow developers to use key based systems for registration,
without forcing the purchasereceive delay and manua processng of orders by developers. A
demondtration of the system is available at the following website:

http://www.ardiri.com/palm/|Code/

Since the agorithms are supplied to the ESD website, the developer is required to establish trut.
However, supplying an agorithm differs no way from supplying a seria number of full verson of
the product, which a number of developers aready do.

4. Registration Techniques

The most important decision to make when developing an gpplication for resde is to decide how the
registration system should work with your application. It 5 important to consider al options that are
available and choose the one that will encourage the users to purchase the gpplication. The choice of
the wrong technique may not dlow the user of the gpplication to satisfectorily complete a tria on
your product — and deter them from purchasing it.

4.1 Copy Protection Database Bit

The Pdm OS® Patform implements its own form of copy protection which can prevent an
gpplication or database from being beamed between devices from within the application launcher.
An application is essentidly an executable resource database, and the programmer can set certain
properties of the gpplication using a smple application programmer interface (API) cdl [4].

Err DnBSet Dat abasel nfo(Ul nt16 cardNo, Local ID dblD, const Char* naneP,
U nt16* attributesP, U nt16* versionP,
Ul nt 32* crDateP, Ul nt32* nodDat eP,
Ul nt 32* bckUpDat eP, Ul nt32* nodNunP,
Local I D* appl nfol DP, Local | D* sortlnfol DP,
Ul nt 32* typeP, Ul nt32* creatorP);

Every database has particular atributes, and can be set using the fourth (4") parameter of this
system cal. Using the following code, it is possible to add this type of copy protection to your
gpplication. Newer versons of the development compilers support setting this bit at compile time.

{
Untlé card, attributes;

Local | D dbl D;

SysCur r AppDat abase(&ard, &dbl D);
if (dblD!= NULL) {
DnDat abasel nfo(card, dblD, NULL, &attributes, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL);
attributes | = dnmHdr Attr CopyPrevention;
DSet Dat abasel nfo(card, dbl D, NULL, &attributes, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL);

The application launcher checks to see if this hit is s, and will
prevent any beaming of the database. A protected application is | Address @ 1K 4
marked using alock icon in the beam dialog (as seen on right). . :.;-:E

Mlail 1K
The idea is smplistic and provides limited protection, fowever, many | neytoeary ok
third party file management utilities do not check this atribute —and | Metwerk @ 1K
beaming of databases (including applications) occurs very easily. It is | prcebus Eo
aso very easy to write a smal Pam application that resets this bit on | Fhire! 54K ~
al databases within the device, hence fooling the mechanism.

Using this technique may actually be more damaging to the developer. Distribution of a product is a
very important issue — the ability for the user to smply beam the application to another provides
free “word of mouth” advertising of the product. Registered versions can be beamed to other users
and made demonstration versionsiif the gpplication is designed correctly.

4.2 Seriad Number

A serid number is a number or sring that is common between al registered users of a particular
piece of software. When the user enters this serid number, the program has all its features activated.
The developer will normaly provide a didog for the user to supply a serid number or string, and
the handling of that entry is performed in amanner smilar to the following:

program c:
#def i ne SERI ALNUMBER 12345
#define incorrectSerial Alert 1001

codeEnt ered = StrATol (str Code);
if (codeEntered != SERI ALNUVMBER)
FrmAl ert (i ncorrectSerial Alert);
el se
regi stered = true;

}

This code will produce assembler smilar to the following:

programs:
2F03 MOVE. L D3, - (A7)
4E4FAOCE TRAP #15

DC. W sysTrapStr ATol
4FEFO00C LEA 12(A7), A7
0C403039 CMPI . W #12345! $3039, DO
6708 BEQ L9
3F3CO3ES8 MOVE. W #1000! $03ES8, - (A7)
4E4FA192 TRAP #15

DC. W sysTrapFrmAl ert

7000 L9 MOVEQ #0, DO

The serid number is right in front of you! Hidden in that mess of assembly code is a comparison of
the DO register (which contains the result from the St r ATol call) with a constant value. In this case,
the vaue being compared is 0x3039, or 12345. Thisis the case when dedling with simple numbers,
if comparing strings the Str Conpare APl [4] cdl is used, and the string being compared has its
address loaded using an LEA ingtruction (to a label in the code) prior to being caled. Searching the
code for that labe will lead you straight to memory location containing the required string.

The developer must place a lot of trust on their users to ensure that the seria number is not
broadcast to their friends or the world. A ‘good faith’ user may purchase the product and simply
pass on the information onto others. Pooling for the cost of an application may occur in this case.

4.3 Neg Screen

A “Nag Screen” is a didog that appears when you dart an application Gear H

reminding you to register. The purpose is to congtantly nag the user to w '—('-"-www_p;,.,;,ge.,,_mm

buy the software until they get to a point where they are sick and tired sales: +1 800.741.3070

of sedi ng it. D; wou wu:tstr;:- play maore?
uppor areware!

Implementation of a nag screen is simple, using the following AP! [4]: Redistratian supoantethe

developer and ensures wou gat
the ozt out of the software.

Untlé FrmAlert (U ntl6 alertlD);

These types of gpplications are very vulnerable to attack and modification, as doing the adjustment
isavery smpletask for even the beginner cracker. Lets consider the following code snippet:

program c:
#defi ne nagScreenAlert 1000

{
FrmAl ert (nagScreenAlert);

}

This code will produce assembler similar to the following:

programs:
3F3CO03E8 MOVE. W #1000! $03E8, - (A7)
4E4FA192 TRAP #15

DC. W sysTrapFrmAl ert

The smple task of replacing the cdl to the AP is dl that is required to prevent the dert from
appearing on the screen. The crack would be as smple as changing the TRAP call Ox4E4FA192)
into a series of NOP instructions (0x4E714E71) —two NOP statements are required as the TRAP uses
four bytes and a NOP requires only two bytes. The resulting code would look as follows:

programs:
3F3CO3ES8 MOVE. W #1000! $03ES8, - (A7)
4E71 NOP

4E71 NOP

The nag screen will never appear again once these modifications are in place, which can be done
using your favourite HEX (binary) editor.

4.4 Code Generation Systems

The most common mechanism for regigtration is the use of an application based code generation
agorithm that alows the developer to assign each user a pseudo-unique code that allows them to
gain access to al features of the gpplication.

Since each user has a unique code specificaly for them, transfer of the application can occur
without posing a threat to the impact of sdes. In many cases, the “beam” factor will dlow the
gpplication to spread further and increase sdes.

The PAm OS® Plaform provides an inbuilt pseudo-unique piece of information. Each user must
HotSync™ their device in order to perform backups, update the data on their device, or ingall
software. This information is pseudo-unique as in many cases two people in close proximity of each
other would not use the same HotSync™ user name (if they did, they wouldn't perform a
HotSync™ on the same machine). It is possble to aobtain the HotSync™ username within an

application using the following code [4].
#i ncl ude <Systent DLServer. h>

{

CharPtr usernanme =
(Char *) MenPt r New(dl kUser NaneBuf Si ze * sizeof (Char));
Dl kGet Syncl nf o(NULL, NULL, NULL, &user name, NULL, NULL) ;

MenPt r Fr ee(user nane) ;

}

The HotSync™ username causes many smal problems. Mogt users don't even know what it is, yet
aone are capable of typing it in correctly when they purchase your product. Care needs to be taken
in respect to punctuation, capitdization, spacing and localization of the HotSync™ user name. The
most flexible manner to deal with this problem is to trandate the binary representation into another
form that the user can supply, as can be done with development kits like RegCode [6].

The Pdm Il series of devices (running Pam OS® 3.0) introduced another form of unique
identification, the flash ROM seria number. In the case where the device contained a flash ROM
chip, it was possible to obtain a unique serial number for each user, using the following code [4]:

{
CharPtr seri al No;
U ntl6 seriallLength, returnVal;

returnvVal =
SysGet ROMIoken(0, sysROMIokenSnum &seri al No, &seri al Lengt h) ;
if (('retval) && (serialNo) && ((UInt8)*serialNo != Oxff)) {

}
}
However not dl PAm OS® Platform devices (Handspring [2], Ille, m100) contain flash ROM
memory chips. They contain what is known as mask ROM chips, which do not have this serid
number and are not user upgradesble. It dso poses a problem when the user damages or loses their
device — a replacement would have a different flash ROM serid number and require the user to re-

register or repurchase the application. Pam, Inc. has not committed to supplying this information
on itsown or licensee devices.

As an dternaive, the developer may dlow the user to manudly enter or provide a string that is used
to generate the unlocking key vaue. Since it is not tied specificdly to a single device, it dlows a
user to use the same usernamelkey combinaion on a number of devices (including their friends)),
but dso dlows users to break devices (new ROM chip or HotSync™ username) and stay registered
without having to go through the process of getting a new registration (they did pay remember).

Once the user information is obtained, the developer writes afunction similar to the following:

U nt 16 generat eRegi strati onCode(Char Ptr usernane)

{
U nt16 code, i;

code = OxCAFE;

for (i=0; (i < dlkUserNaneBuf Size) && (usernane[i] !'= "\0"); i++) {
code += (((username[i] & OXAA) << 8) | (usernane[i] & 0x55));
code = ((code << 1) | ((code & 0x8000) >> 15));

}

return code;

It is important to make the code generation as non-smplistic as possible. As soon as someone
figures out how the code is generated — a key generator will be available. One of the most tedious
tasks for someone who wants a free copy of your software is to sit down and figure out how this
agorithm works. The more cryptic it is, the longer it will take them to figure out.

When a key generator is available, in many cases subsequent releases of an application do not need
to go through the cracking phase again — as they will then have atool to bypass dl protection until
the key generation agorithm changes.

Another approach is to try the reverse — supply the user with a code that is then used to generate a
gring that can to be compared againgt the string that is gathered on the device. This technique
makes it dightly harder to generate a key generator, as the agorithm to convert a string to a number
is different from converting a number to a string — which means the reuse of your code generation
algorithm won’t occur.

45 Usage Counter N .
“Trid Periods’ are very common in appllcalong and may be !lmlted Lode Runner™: The Legend Returns
to anumber of application executions or a pre-defined period of time. Enter your serial number to stop

this screen frorm appearing again.

A common usage counter example isthe “30 day tria period”. P e g S
Tao purchase, please visit:

This type of registration alows a user to gain full access to the | wwwpocketexpress.comipurchase

. 2 . L . - . 5
;aglpl)g\?vzﬁon during the limited trid period, and can be implemented as G i i i
*
typedef struct
U nt 32 keyDat a; /1 the time the application was first started
ulnt8 keyVal ue; /1l the nunber of days remaining in the tria
} KeyType;

{
KeyType *key = NULL;

/'l 1 oad the key from somewhere

/'l a key exists, lets do our checking
if (key !'= NULL) {
Unt32 diff = Ti mGet Seconds() - key->keyData

/1 30 days is over?
if (diff >= 0x00278D00) key->keyValue = 0; // 0x00278D00 = 30 days
el se

key->keyValue = 30 - (diff / 0x00015180);// 0x00015180 = 1 day
}
/'l no key, create it.
el se {

key = (KeyType *) MenPtrNew(si zeof (KeyType));
key->keyDat a Ti nGet Seconds() ;
key->keyVal ue 30;

}

/'l save the key somewhere

/'l clean up
MenPt r Fr ee(key) ;

The gpplication must store some information somewhere, such that the remaining time available can
be determined. The “KeyType” dructure contains dl the relevant information required for an
gpplication to manage its usage based on time. It keeps track of the first time the gpplication was
executed, and the number of days remaining in the trid.

Where does one store this key information?

The answer to this quedtion is at the discretion of the developer. It could be stored in one of the
following places:

- saved preference
- regigtration database
- registration manager software

The PAdm OS® Patform has a very efficient application manager such that when an application is
deleted, dl the associated preferences and databases are deleted as well.

If this key is stored in a database or preference that shares the same creator ID as the application, it
will be deleted when the user removes the gpplication from the device. Reinddlation of the
software will alow them to regain demonstration access.

Using a creator ID other than the application is known as “shadowing” behind another application.
The problem with this technique is that even if the user has no intendon of reingaling the
goplication — a smal amount of data will remain on the device. Leaving data behind in this manner
is seen negatively, as memory on the devices themsdvesis dready limited.

Isforcing the user to remove the gpplication and reingdl it enough of a hasde to make them buy?

Another technique would be to introduce a software regigtration manager into the device. The
developer could use this storage space to keep necessary information like this, but it too, will dso
be subject to deletion and takes up valuable memory space.

5. Anti-Cracking Techniques

The at of being successful with anti-cracking is the ability b delay or make the process of
generdting a pirate verson or modification of your gpplication. A number of techniques exist for
doing this, however they are most powerful when used in conjunction with each other —making a
“can of worms” for prying eyes to ded with.

5.1 Spedid Builds

A common approach used by a few developers is to build two or more separate versions of the
product for distribution. A smaller, feature limited verson for demonstration purposes and a larger
full feature version for thoseregistered users.

Although regarded as one of the best mechanisms to protect your software, as its not possible to
modify the demongtration version to be registered, it does not alow for beaming of the application
or prevent distribution between people who have the registered product. Just as the demonstration
verson is made available for download on the Internet, so will the registered version.

5.2 Regidration Check

If an application has implemented a regidration system where some lockout is performed, the
gpplication must check if the user has registered or if the demonstration period has completed. The
logic is ample; if they have registered let them continue — if not, show a diaog informing the user
that their trid is over and they must purchase the product.

Many application developers opt for the smple solution, by writing a single function that, based on
what the application knows, returnsat r ue orf al se vaue that represents the registration status.

program c:
Bool ean checkRegi stered()

{

Bool ean result = fal se;

/'l check user registration (using appropriate technique)

return result;

}

This code will produce assembler similar to the following:

programs:
4E560000 LI NK A6, #0
57C0 SEQ DO
4400 NEG DO
4E5E UNLK A6
4E75 RTS

The return type to a function on the PAm OS® Plaiform is stored in the DO register. After the
gpplication cdls the function, it compares the result stored in this register to determine what needs
to be done next.

programs:
4E560000 LI NK A6, #0
7001 MOVEQ #1, DO
4E5E UNLK A6
4ET75 RTS

Replacing the assembler ingtruction before the UNLK command with a MOVEQ #1, DO ingtruction
(0x7001) makes this routine always return a true result. This means, whenever a check is
performed, the application thinks it is always registered — and the program continues on as

appropriate.
The modular approach to handling this makes it a smple target, as the check is done in one place.

Its pretty easy to prevent this from happening, using the i nl i ne attribute, which tdls the compiler
to not make the function call a subroutine and instead place the contents on the function where it is
being cdled.

programc:

inline Bool ean checkRegi stered()
{

}

Each cdl to the checkRegi st er ed() function will result in the same code being duplicated in
many places through out the gpplication —which means more patches are required.

Ancther technique is b not use a Bool ean result varigble. By returning an integer vaue, it is not
known what the red return result should be — making it a guessng game, to some extent (it will
aways be able to trace the call somewhere — it just takes longer).

5.3 PAm OS® Emulator (POSE) Detection
The PAm OS® Emulator is a very important tool as it provides a safety net for reckless tampering
of software without the risk of destroying data or causng damage to the device. When used in

conjunction with a powerful debugger tool, it proves an excellent software debugging and patching
environment. Without these tools, it would be very tedious and risky to perform software patching.
Y ou can detect if your gpplication is running on POSE using the following two techniques:

Bool ean onPOSE()

{
Ul nt 32 val ue;
Err err;
/1 works on all versions of the Palm OS
return (FtrGet(' pose', 0, &value) == errNone);
}
or.
#i ncl ude "Host Control . h" /1 distributed with POSE
Bool ean onPOSE()
{
/1 works only on versions of the PalmGOS >= 3.0
return (Host Get Host | D() == host | DPal mOSEmul at or) ;
}

With careful design, it may be possible to implement some fancy craftwork, making it impossible or
very difficult for someone to tamper with the software on the emulator. Create a few fase leads for
the people with prying eyes if the emulator is detected. It's great knowing where the needle is and
watch them search in the wrong haystack.

Pdm Debugger may dso be connected to a red device for debugging purposes, diminating the
need for the PAlm OS® Emulator.

5.4 Code Checksum

The ultimate defence against software patching is to be able to detect the presence of modification.
A checksum, though normally used to verify large chunks of data that are transmitted between
sources, can adso be used to determine if a modification has been made to an application. The API
[4] provides aroutine, a system leve to perform a CRC16 level checksum.

{
MenHandl e codeH;
voi d *codeP;
Ul nt 32 codeSi ze;
Ul nt 16 checkSum
/1l obtain a reference to the code000l1. bin resource
codeH = DmCet 1Resour ce(' code', 0x0001);
codeSi ze = MenHandl eSi ze(codeH)
codeP = (voi d *) MenHandl eLock(codeH);
/'l determ ne the checksum of the code segnent
checkSum = Crcl16Cal cBl ock(codeP, codeSi ze, 0);
MenHand!l eUnl ock(codeH) ;

}

The vaue returned from the system cdl can then be used to determine the vdidity of the code
resource that was checked. If the resulting checksum is not what is expected, the application can
bring up a dialog warning the user or force the application to be unregistered.

It may, however, be more appropriate for the developers to write their own checksum routine. The
Crcl16Cal cBl ock routine uses a well-known checksum agorithm, and using a standard routine
makes it much easer to cdculate a new checksum result value if a paich is gpplied to the

application. In the case where a custom routine is written, it must also be reverse engineered to
determine the correct checksum value.

5.5 Patch Detection

Another form of verifying the binary of the gpplication is to andyse it in search of various known
assembler op-codes that have been inserted into the distributed application. The two most powerful
assembler op-codes used in the patching of software are NOP (0x4E71) and TRAP #8 (0x4E48). In
many cases, these op-codes are not found in the release versons of the applications — as they are
used mainly to aid in the development of the software.

The following code scans all code segments and determines the existence of these two op-codes:

{
MemHandl e codeH;
voi d *codeP;
Ul nt 32 codeSi ze;
Ul nt8 pat chStatus, i;
patchStatus = 0;
for (i=0; i<CODE_RES_COUNT; i++) {
/'l obtain a reference to the resource
codeH = Dntet 1Resource(' code', i);
codeSi ze = (MenHandl eSi ze(codeH) >> 1); // we are counting words
codeP = (void *)MenmHandl eLock(codeH);
/'l search for a patch (0x4e48 or 0x4e71)
asm("nmovem | 9W@0-Wdl/ W@0-%Wal, - (%Wsp)" : :);
asm("nove. |l 9%, %@0" : : "g" (codeP));
asm("nove.l %, %Wal" : : "g" (&patchStatus));
asm("nmove. |l %, ®W@0" : : "g" (codeSize-1));
asn("
nove.w (9%@0), %dl
eori.w #Oxffff, %Wdl
cnpi.w #0xbl1l8e, %@l | check if opcode is Ox4e71
beq Lo1
cnpi . w #0xblb7, 9%l | check if opcode is 0x4e48
beq LO2
bra LO3
LO1:
ori.b #1, (%Wal) | bit one set if NOP
bra LO3
LO2:
ori.b #2, (9Wal) | bit two set of TRAP #8
LO3:
addg.| #2, %@0
dbra %40, LO1
o),
asm "movem | (%sp) +, %Wd0- Wdl/ %9@0- Wal" : :);
MenHandl eUnl ock(codeH) ;
}
}

The above code is specificdly designed for use with the PRC-Tools (GNU gcc) development
environment; however, it should not be too cumbersome a task to write it to be compatible within
the CodeWarrior® development environment.

A reference to each code segment is obtained, and then a linear search is performed looking for the
two op-codes (0x4E71 and Ox4E48). XOR i ng with OxFFFF is required to prevent the patch

detection code from finding the two op-codes within it. The scanning code was written in
assembler; to force this checking style (required) —good optimizers would not perform it this way.

It is aso possible for the developer to use this mechanism to count a specific number of op-codes
within the application. Just performing the “detection” and storing it in a Bool ean result will make
it smple prey — just set the vdueto f al se, and the application won’t know any better.

A more advanced technique would be to manualy insert a pre-defined number of op-codes into the
gpplication, and use that count as a dependency or offset within your application. With the
introduction of another op-code, the number changes, and can be used to prevent the program from
actualy running. Consider the following code:

voi d t heCodeToExecut el f NOTPat ched()

{
}
voi d t heCodeToExecut el f Pat ched()
{
}
{
void *functionList[] = {
&t heCodeToExecut el f Pat ched,
&t heCodeToExecut el f Pat ched,
&t heCodeToExecut el f NOTPat ched,
&t heCodeToExecut el f Pat ched
void (*function)(void):
/]l determ ne which function to execute
function = (void *)functionList[opcodeCount % 4];
function();
}

In this example, the code will only execute correctly if the op-count modulus 4 is 3. The
introduction of an additiona op-code causes the count to change, and call a different function.

5.6 Encrypted Code

An gpplicaions dgorithm is dways open — to the point of being able to read it in the operating
systems assembly language. The use of de-compilation utilities makes source code available to
prying eyes for inspection — and with enough understanding of the platform specific assembly
language these users can determine or modify the logica processing of an application.

One technique to prevent the basic “de-compilation” of your gppication is to use encryption.
Unfortunately, support for doing this type of operation is not normaly built into the compiler. In

many cases, a third party utility will need to be written to perform the encryption of code &fter the
norma build process is complete.

{
MenHandl e codeH;
Ul nt 32 codeSi ze;
U nt8 *codeP;

/'l duplicate the encrypted resource into nmenory

codeH = Dntet 1Resource('data', 0x1111);
codeSi ze = MenHandl eSi ze(codeH)
codeP = (U nt8 *)MenPtr New codeSi ze);

MemVbve(codeP, MenmHandl eLock(codeH), codeSi ze);

MenHandl eUnl ock(codeH)

/1l dynamically nmodify the data stored in the codeP pointer
I

/1l execute the function

{
void (*nyCode) (void); /1 the function specification

myCode = (void *)codeP
nmy Code() ;

}

/'l clean up
MenPt r Free(codeP) ;

}

In the above example, the assumption has been made that within a specific resource there is an
encrypted version of a function that needs to be executed. The first step is to obtain a copy of this
resource, placing it on the dynamic hesp by dlocating memory and copying the resource contents.
Once a copy of the resource has been obtained, it is possible to perform decryption on the memory.
Given this pointer, and once the code it contains has been safely converted into the native platform
binary language, a function pointer can be defined and the code can be executed.

What this offers the developer is the assurance that simple de-compilation of an application will not
reved the agorithms used within the agpplication. However, with the use of a debugger, a memory
dump of the gpplication can be obtained while the program is running. This memory dump can then
be de-compiled and viewed by an externa party. It does not matter how strong your encryption
techniques are — prying eyes can just wait until the decryption is done and then perform this
memory dump.

Providing some dependency on a user unique resource places the requirement that at least one
purchase must be made of your product to get a copy of the application binary. In many cases, users
dedling with illega copies of software are not willing to pay for even one copy of the software — it
may provide more delay in the piracy process.

5.7 SAf -Modifying Code

Dynamicdly changing runtime code is a very interesting and chalenging area, however, in many
cases it is very difficult to implement and requires a platform specific understanding of how the
gpplication will be executed on the platform that is being targeted.

{

/1 turn off menory semaphore protection
MenSemaphor eReserve(true);

/1 nodify nenory inside the application (or anywhere el se on device)
I

/1 turn on nmenory semaphore protection
MenSemaphor eRel ease(true);

}

The use of this technique, when done correctly, can surely throw prying eyes off course and waste a
lot of thelr time (that's a good thing) — however, doing this type of operation can be very dangerous
or cause your gpplication to have problems when being used by users. For example, the application
will only execute when it is stored in RAM— moving it to an externd memory card or into flash ROV
will cause the memory writing operations to fall.

5.8 Code Splitting
An interesting argument in the cracking arenais “if the registered code isn't there —don’t bother.”

It is practicaly impossible for someone to tamper with your application to make it registered if the
code that does actions only available to registered users is not stored in the application itsdlf.
Implementing this technique is done n a smilar manner to which the encryption of code segments
is performed. A reference to amemory location is obtained and then it is executed.

{
DmOpenRef dbRef ;

/1 try and open the database
dbRef =

DmOpenDat abaseByTypeCr eat or (' _key', appCr eat or, dmvbdeReadOnl y) ;
if (dbRef != NULL) {

MenHandl e recordH,;
/1l get a reference to the first record
recordH = DmGet Record(dbRef, 0);

/] execute the function

{
void (*nyCode)(void); /1 the function specification

myCode = (void *)MenHandl eLock(recordH);
nmy Code() ;
MenmHand!| eUnl ock(recor dH);

}
}
}

In this example, the gpplication tries to locate an externd database of a known creator id and
database type. If it is found, the first record is obtained, locked and then executed. If the database
was not available, the function call would not be made, and the developer could bring up a didog
saying that the functiondity is not available.

The demondration verson is the registered verson. From a user perspective, they ingdl the
application for demondtration purposes and use the software as appropriate. Upon purchase of the
gpplication, the user will be provided with an additiond file to ingal onto their device. The nature
of the application & such that having the file means you are registered, and not registered if it
cannot be found. Users will be able to beam the application to other users, even if it is registered, as
the additiond database will not be beamed. With additiona checks against the HotSync™
username, it is possible to make the database pseudo-unique to each user.

6. CASE STUDY : Liberty - The GameBoy™ Emulator

Liberty [7] is the first GameBoy™ Emulator for the PAlm OS® Platform. Developed jointly by
Michael Ethetton and Aaron Ardiri, Liberty has received outstanding press coverage for achieving
what many people had thought, “could not be done’.

Since Liberty is a commercia product, the descriptions about exactly how the registration scheme
operaes interndly is something for the imagination of the reader. The purpose of describing it is to
show the effort required to implement a sophisticated registration system.

6.1 Design

The initial demonsgtration version of Liberty alowed the user to emulate GameBoy™ game images,
which were only 32Kb in size that mainly consisted of demo or freeware gpplications. At the time,
over 50 GameBoy™ game images were known to meet this requirement.

After recelving a lot of negative user feedback about the limit imposed in the first verson,
subsequent versions of Liberty provided a trid period of 30-time execution of the application on
any sized GameBoy™ game image. Once the trid usage period tad expired, the user was restricted
to playing GameBoy™ rom images of 32Kb in Size.

6.2 Implementation

To understand the process of how the Liberty application implements its registration system, it is
important to understand how the gpplication is structured. Liberty is a multi-segmented gpplication
due to its Sze, but it dso makes the act of implementing a regidration system easier. A tota of
seven (7) code segments are defined within the liberty application.

c0de0000. bi n - system code segment
code0001. bi n - themain code segment
c0de0002. bi n - regidration routines
c0de0003. bi n - theabstract device layer
code0004. bi n - GameBoy ™ emuldtion routines
c0de0005. bi n - help system

c0de0006. bi n - regigration system loader
c0de0007. bi n - encryption key

The regigtration logic is as follows (in basic terms):
Li bertyRegi stration()

/'l tanpering check
perform a code scan, |ooking for NOP, TRAP #8
if nmodified
destroy code0006. bin code segnent (self-termnate)
endi f

/'l registration |oader

| oad the code0006. bin resource into the dynanic heap
usi ng code0002. bin as a key, decrypt it

execute the decrypted code

di scard the menory used.

/1 continue with the program

}

To prevent new comers to the piracy scene, there is nothing like having an application crash hard
when someone tries to patch the binary using a NOP or TRAP #8 (debugging trap) instruction. If a
modification is detected, the application salf-destructs. It's annoying and is disabled fairly quickly.

The code0006. bi n code segment is encrypted based on the code0002. bi n code segment. It
contains the mechanism for loading the registration system and is encrypted to prevent prying eyes
from seeing what exactly is going on. What this provides is added protection in the case that the
first patch detection systems are bypassed.

regi strati onLoader ()
{
/1 sanity
assunme no deno, no registration

/'l key resource search

| ocate the registration key database

i f database found
load the first record info the dynam ¢ heap
usi ng code0007. bi n and the Hot Sync™user nanme, decrypt it
i f deno dat abase

performa 30 trial limt check
end if
store registered routine for later use
end if

Modification to the code0002. bi n resource causes the registration loader to decrypt incorrectly.
The regidration loading routine is responsible for locating the regigtration key, determining if it is a
demondtration version or registered, and prepares the system for use. Its purpose is to provide the
gpplication with the additiona code that is not avalable in the demondration verson of the
application.

When a user purchases Liberty or wants to perform atrid of the gpplication, they must ingtdl an
additiona database, which contains code that gives them full access to the features of the
application. The demongtration version and registered version of the product is the same file, and, as
a result dlows for the beaming of the application amongst users without the need to worry about
piracy.

The demondration key is identical in nature to a full version; however, it has been encoded with a
specia HotSync™ username that had a 0.01% chance of being used by anormal user.

Illegal distribution between users does not occur as the key file unique to each user. This is
accomplished by using the first name of the HotSync™ username to determine a starting offset for
the encryption agorithm that uses the code0007. bi n code segment as its key. The encryption
agorithm uses an XOR ingruction and dynamically modifies the key after each byte is processed.

It dl comes down to the following code segment in Liberty:

{
/1 lock down the first 32K

gl obal s- >enu. ptrPages[0] =

(U nt8 *)MenmHandl eLock(DmGet Resour ce(dat Type, 0));
gl obal s- >enu. ptrPages[1] =

(Ulnt8 *)MenmHandl eLock(DnGet Resour ce(dat Type, 1)) ;

/1l load and | ock the "remainding" rom chunks :))

{
GaneAdj ust nent Type adj ust Type;

/1 define the "adjustnment"

adj ust Type. adj ust Mode = ganeLoadROM

adj ust Type. dat a. | oadROM pageCount = gl obal s- >enu. pageCount ;
adj ust Type. dat a. | oadROM ptr Pages = gl obal s- >enu. ptr Pages;

/1 do it! 1))
Regi st er Adj ust Gane(prefs, &adjustType);
}
}

The first 32Kb of the GameBoy™ game image are locked down regardless of the Stuation. In the
event where the game image is larger than 32Kb, cdling the code stored in the regidtration key
database locks the additiond resources. Liberty ensures a game image larger than 32Kb is not
emulated if the gpplication is not registered.

Additionad development tools were required in order to perform the post compilation process of
encrypting code resources and separating the registered code into an externa database file.

The design and implementation of this system required approximately one month of effort.

7. Conclusions

This paper has described a number of issues that a developer must consider when writing
gpplications for digribution on the PAm OS® Platform. The choice of registration technique is

adways a hard decision, yet it has to be made a some point. A number of issues were discussed here
and hopefully provide some help in making this type of decision.

Invegtigating methods of registration from a technical point of view is an intereding task. It is
aways possible to make an gpplication take a bit longer to enter the piracy scene.

The ultimate god is to satisfy the following equation:

Time(to performcrack) >= Tine(cracker willing to put into it) AND
Thr eshol d(annoyance provi ded to user) < Threshol d(accepted by user)

Unfortunately, it is not that smple.

Firacy relies soldly on demand — supply is never the issue. The more popular the application, the
more likely it will be provided in anillegal form. It is very common for applications such as games
and essentid toolsto find their way to the piracy scene very quickly.

Fighting piracy is avery difficult task.

Every war has a loser. The losers of the piracy war are not the developers or the piracy community
—it's the most important person of al, the user. Registration systems were created to force payment
from users for the effort that has been performed to produce a particular product. The decision that
needs to be made is deciding at what point will the user purchase the application.

It isalso good to consider why the piracy scene existsin thefirst place.

The piracy scene is generdly run purely on pride. The whole idea of piracy is to get gpplications
for free — 1 don’t see anyone sending pay cheques out to these guys, and some of them put a lot of
effort into it. It's like kicking the al-important last second god in your high school footbal game.

Why are we doing dl this? The answer is very smple —we shouldn’t.

| performed the anti-cracking research to satisfy my own personal desires. | wanted to know how it
was done — purely out of interest. In the process | put a lot of my own time and effort into it,
expanding on my knowledge about the subject. However, a the same time, | provided the fuel
needed to keep the piracy scene in existence. The challenge keeps the system ticking. The Liberty
registration system, as was described earlier is not trivial, and has been compromised.

Implement what is required to keep honest users honest —they are important, don’t fight the bettle.

References
[1] Pam Computing, http://www.palm.com/
[2] Handspring, http://www.handspring.com/

[3] Free Software Foundation. http://www.gnu.org/philosophy/categories.html.
Caegories of Free and Non-Free Software

[4] Pam Computing. http://www palmos.com/
PalmOS™ SDK 3.5 Reference

[5 PamGear H.Q, http://www.palmgear.com/

[6] PaAm Creations. http://www.palmgear.com/sof tware/showsoftware.cfm?prodl D=2997
RegCode Devel opment Kit

[71 Gambit Studios, LLC. http://Amww.gambitstudios.com/

Pam, Pdm Computing and HotSync are registered trademarks of Pam, Inc.

Red Time Fulfillment is a registered trademark and jCode is a sarvice trademark of PAmGear H. Q.
CodeWarrior is aregigered trademark of Metrowerks

All other trademarks are property of their respective owners.

